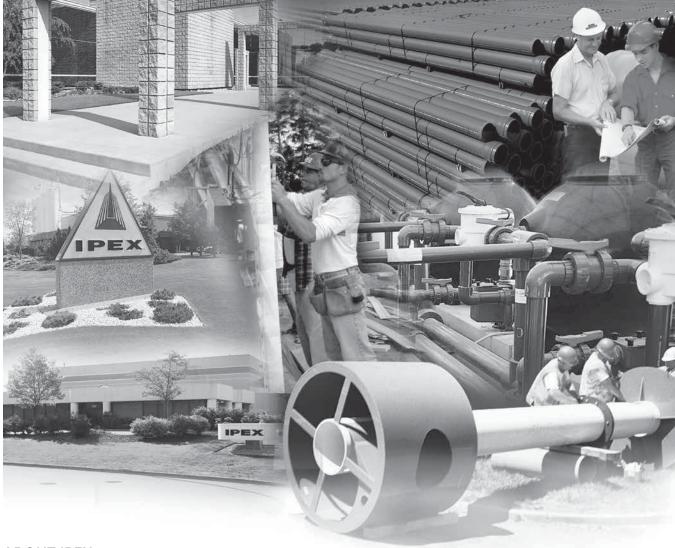
VOLUME XI: CORROSION RESISTANT THERMOPLASTIC VALVES

Industrial Technical Manual Series

SECOND EDITION

IPEX THERMOPLASTIC VALVES

- Ball Valves
- Butterfly Valves
- Diaphragm Valves
- Check and Vent Valves
- Specialty Valves


Thermoplastic Valves

Industrial Technical Manual Series

Vol. 11, 2nd Edition

© 2023 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission.

For information contact: IPEX, Marketing, 1425 North Service Road East, Oakville, Ontario, Canada, L6H 1A7

ABOUT IPEX

At IPEX, we have been manufacturing non-metallic pipe and fittings since 1951. We formulate our own compounds and maintain strict quality control during production. Our products are made available for customers thanks to a network of regional stocking locations throughout North America. We offer a wide variety of systems including complete lines of piping, fittings, valves and custom-fabricated items.

More importantly, we are committed to meeting our customers' needs. As a leader in the plastic piping industry, IPEX continually develops new products, modernizes manufacturing facilities and acquires innovative process technology. In addition, our staff take pride in their work, making available to customers their extensive thermoplastic knowledge and field experience. IPEX personnel are committed to improving the safety, reliability and performance of thermoplastic materials. We are involved in several standards committees and are members of and/or comply with the organizations listed on this page.

For specific details about any IPEX product, contact our customer service department.

SAFETY ALERTS

Engineered thermoplastics are safe inert materials that do not pose any significant safety or environmental hazards during handling or installation. However, improper installation or use can result in personal injury and/or property damage. It is important to be aware of and recognize safety alert messages as they appear in this manual.

The types of safety alert messages are described below.

This safety alert symbol indicates important safety messages in this manual. When you see this symbol be alert to the possibility of personal injury and carefully read and fully understand the message that follows.

A WARNING

"WARNING" identifies hazards or unsafe practices that can result in severe personal injury or death if instructions, including recommended precautions, are not followed.

A CAUTION

"CAUTION" identifies hazards or unsafe practices that can result in minor personal injury or product or property damage if instructions, including recommended precautions, are not followed.

NOTE: The use of the word "NOTE" signifies special instructions which are important but are not related to hazards.

For the materials described in this manual, the following warming applies.

MARNING

- NEVER use compressed air or gas in PVC/CPVC/PP/PVDF pipe and fittings.
- NEVER test PVC/CPVC/PP/PVDF pipe and fittings with compressed air or gas, or air-over-water boosters.
- ONLY use PVC/CPVC/PP/PVDF pipe for water and approved chemicals.

Use of compressed air or gas in PVC/CPVC/PP/PVDF pipe and fittings can result in explosive failures and cause severe injury or death.

IPEX Thermoplastic Valves

This page intentionally left blank

CONTENTS

	Thermoplastic Valves Manual
	About IPEX
	Safety Alerts
Section One:	General Information
	Overview1
	Features and Benefits
	Applications
	Material Description
	Valve Types
	Valve Selection
	Further Information
Section Two:	Ball Valves
	VKD Series Ball Valves
	VXE Series Ball Valves
	VEE Series Ball Valves
	MP Series Compact Ball Valves
	TKD Series 3-Way Ball Valves
	VKR Series Regulating Ball Valves
Section Three:	Butterfly Valves
	FK Series Butterfly Valves
	FX Series Butterfly Valves
	FE Series Butterfly Valves
Section Four:	Diaphragm Valves
	DK Series Manual Diaphragm Valves
	DK Series Pneumatic Diaphragm Valves
	DKD Series Diaphragm Valves
	VM Series Manual Diaphragm Valves
	VM Series Pneumatic Diaphragm Valves
	DV Series Diaphragm Valves
	CM Series Compact Diaphragm Valves

Section Five:	Check and Vent Valves	
	SXE Series Ball Check Valves	207
	SSE Series Spring Assisted Check Valves	. 217
	VR Series Piston Check Valves	227
	SC Series Swing Check Valves	237
	VA Series Air Release Valves	243
Section Six:	Specialty Valves	
	RV Series Sediment Strainers	249
	LV Series Lab Valves	260
	S12/22 Series Solenoid Valves	265
Section Seven:	Standards	
	Standards Organizations	275
	Applicable Standards	275

SECTION ONE: GENERAL INFORMATION

OVERVIEW

This manual provides the most up-to-date and comprehensive information about IPEX corrosion resistant thermoplastic valves. Written with the needs of the engineer and contractor in mind, all aspects of our valves are covered. This includes material properties, specifications, valve types and selection, installation, as well as testing and operating considerations.

With more than 50 years of design and manufacturing experience, these lightweight, long life and maintenance free valves save both time and money. Our high-tech automated manufacturing and testing facility ensures unparalleled reliability for each and every valve.

IPEX quality engineered products include many unique characteristics ranging from important safety features, to simple ergonomic and aesthetic benefits. Material options such as PVC, CPVC, PP, PVDF, and ABS make our corrosion resistant valves ideal for use in a wide variety of demanding applications.

IPEX thermoplastic valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards. Our network of manufacturing and customer service facilities across North America ensures fast, reliable service, and expert technical support.

FEATURES AND BENEFITS

IPEX valves have extensive features and benefits unrivalled by the competition. The compact and double blocking design of our ball valves makes them easy to install, yet safe while conducting line maintenance. Machined components and anti-frictions rings result in reduced seal wear and minimal breakaway torque on all our quarter turn valves. Ergonomic handles with incorporated safety lockouts can be removed to reveal integrated ISO pads for direct mount actuation. Many of our valves feature deep square style threads for improved strength and reliability as well as thick o-rings and deep grooves for maximum sealing. For a complete list of features and benefits, please consult the Thermoplastic Valve Multimedia CD or the specific valve literature.

APPLICATIONS

Industrial and Process Piping

- Plant Water Supply and Distribution Lines
- · Cooling Water Systems
- Chemical and Washwater Systems for Photographic Laboratories
- · Acid Products Handling for Refineries, Metal Works and Plating Plants
- Bleach, Dye and Acid Lines in Textile Mills
- · Deionized Water
- Tailing and Slurry Lines in Mines, Smelters and Fertilizer Plants
- · Vacuum Piping
- Pure Chemicals for Semiconductor & Pharmaceutical Industries
- · Aquatic Animal Life Support Systems
- Piping in Fish Hatcheries, Zoological and Biological Buildings
- Well Casings and Dewatering Lines
- · Drainage and Effluent Piping
- · Swimming Pool Piping
- · Rainwater Leaders for Buildings

Pulp and Paper

- Pulp/Chemical Recovery Systems
- · Bleach Plant Piping Systems
- · Washwater Piping and Lagoon Systems

Food Processing

- Brine and Seawater Distribution in Fish Plants
- · Brine Systems in Meat Packaging Plants
- · Piping for the Dairy, Canning and Beverage Industries

Water and Sewage Treatment

- · Alum and Ferric Chloride Handling
- Chlorine Injection Systems
- · Piping in Lagoons and Settling Ponds
- Rainwater Lines

Irrigation

- Golf Courses
- · Greenhouses
- Agriculture
- · Residential Turf
- · Commercial Turf

MATERIAL DESCRIPTION

BODY MATERIAL

PVC (Polyvinyl Chloride)

PVC is the most frequently specified of all thermoplastic materials and has been used successfully for over 60 years. PVC is characterized by distinctive physical properties, and is resistant to corrosion and chemical attack by acids, alkalis, salt solutions and many other chemicals. It is attacked, however, by polar solvents such as ketones and aromatics. Of the various types and grades of PVC used in plastic piping, the most common is cell classification 12454 conforming to ASTM D1784.

CPVC (Chlorinated Polyvinyl Chloride)

CPVC (Cell Classification 23447) conforming to ASTM D1784 has physical properties at 73°F (23°C) similar to those of PVC and chemical resistance similar to or generally better than that of PVC. With a design stress of 2,000 PSI and maximum service temperature of 210°F (99°C), CPVC has proved to be an excellent material for hot corrosive liquids, hot and cold water distribution and similar applications above the temperature range of PVC.

PP (Polypropylene)

Polypropylene is a lightweight polyolefin that is generally high in chemical resistance. Type 1 Polypropylene conforming to ASTM D4101 is chemically resistant to organic solvents as well as acids and alkalies. Generally, polypropylene should not be used in contact with strong oxidizing acids, chlorinated hydrocarbons and aromatics. Polypropylene has a maximum service temperature of 212°F.

PVDF (Polyvinylidene Fluoride)

Polyvinylidene Fluoride is a strong, abrasion-resistant thermoplastic with excellent heat stability and chemical resistance typical of fluorocarbon polymers. It can be used in temperatures up to 285°F (140°C) with a wide variety of acids, bases and organic solvents, and is ideally suited for handling wet or dry chlorine, bromine and other halogens. No other thermoplastic piping material can approach the combination of strength, chemical resistance and operating temperature that PVDF piping systems can offer.

ABS (Acrylonitrile-Butadiene-Styrene)

ABS identifies a broad family of engineering thermoplastics with a range of performance characteristics. The copolymeric system can be blended to yield the optimum balance of properties suited to a selected end use. Acrylonitrile imparts chemical resistance and rigidity. Butadiene endows the product with impact strength and toughness. Styrene contributes to ease of processing.

SEALING MATERIALS

EPDM (Ethylene propylene diene monomer)

EPDM is the abbreviation, issued by ASTM, for elastomers derived from the propylene and ethylene copolymer. The absence of unsaturation groups at the molecular level gives EPDM excellent resistance to oxidation products but will show a certain swelling when in contact with mineral and petroleum oils, diester base lubricants and organic solvents. Its operating temperature ranges from -65°F to 284°F (-54°C to 140°C).

FKM (Vinylidene fluorine rubber)

FKM is the abbreviation, issued by ASTM, for fluorocarbon elastomers derived from vinylidene fluorine copolymers. Trade names include Viton A&B™ or Tecnoflon™. Characterized by excellent resistance to heat and chemical agents, FKM is virtually inert to oil and most solvents and exhibits good chemical resistance to many aromatic and aliphatic hydrocarbons. Its working temperature range is considered to be from −13°F to 392°F (−25°C to 200°C) although it has been known to seal at very low temperatures such as −58°F (−50°C).

PTFE (Polytetrafluorethylene)

PTFE or polytetrafluorethylene is a fluorinated polymer characterized by a high molecular weight and a nearly complete chemical resistance to reactives and solvents. Thanks to its characteristics of self-lubrication, shock resistance and extraordinary chemical inertness, polytetrafluorethylene polymers, under trade names such as Teflon®, Fluon™ and Argoflon™, have been successfully used in the manufacture of sealing components. Among thermoplastic resins, PTFE allows the highest working temperatures. It can be used at constant temperatures of up to 500°F (260°C).

VALVE TYPES

By definition, a valve is any device that regulates the flow of gases, liquids, or loose materials through piping or through apertures by opening, closing, or obstructing ports or passageways. Some main categories of valve types are as follows:

Ball Valves

Ball valves are generally used for on/ off service, but can range from simple molded-in-place construction to high-end industrial designs with many features and benefits. Multi-port ball valves allow for mixing, diverting, and bypassing flow. Their name is derived from the modified ball in the center of the valve which allows flow to enter and exit through two or more ports. This ball is tightly held between multiple seats, and is cycled via a stem-handle connection. They are typically categorized as "quarter turn" or 90° valves, and can be easily automated. Many ball valves feature full port flow, blocking true union ends, and compact ergonomic designs allowing for simple installation and maintenance.

Butterfly Valves

These highly versatile valves can be used for simple on/off service but also for processes requiring precise throttling. They get their name from the stem-disc assembly that controls the flow. Cycling the valve just 90° allows full travel from the closed position (disc perpendicular to the pipeline) to the open position (disc parallel to the pipeline) or vice versa. A continuous flow profile between fully closed and fully open makes these valves ideal for use in modulating service. While typically connected to the system between two flanges, end-of-line installation is possible while maintaining pressure upstream. An extensive size range and direct mount actuation make them suitable for a wide range of applications.

Diaphragm Valves

These valves are the perfect solution when precise flow throttling is required. Their design employs a flexible "diaphragm" component which is compressed against the body of the valve to provide a bubble tight seal. The weir style design is extremely good for abrasive slurries as there is no "dead space" for particles to become trapped. They are widely used in high purity applications because their design prevents friction and subsequent particle creation when cycling. Only the body and diaphragm are in contact with the process media. Due to the modular nature of the design, many body styles, diaphragm and seal materials, and actuation options are available.

Check and Vent Valves

Check valves are unidirectional and should be used whenever there is a need to prevent back-flow of process media. This may be when two incompatible fluids cannot be allowed to mix, or when reverse flow would cause undesirable drainage of a system line or tank. Many styles exist including: simple ball checks, heavy duty swing checks, and highly efficient piston checks. These valves are typically gravity operated and require very little back pressure seal. Air release or vent valves safely allow any entrapped air or gas to escape, avoiding potential damage to the piping system.

Specialty Valves

IPEX offers a few specialized valves for a variety of process requirements. Sediment strainers trap suspended particles flowing in the process line, ensuring that downstream components are protected. Solenoid valves are ideal for high-cycle applications where remote operation and precise control are important. Lab valves are an economical solution for small scale on/off requirements.

The following table should be used as a guide only as some valves only offer certain combinations of sizes, materials, connections, and pressure capabilities. Always consult the specific valve style section for complete information regarding availability and technical performance.

IPEX Thermoplastic Valves

Valve Series	Valve Type	Sizes (in)	Materials	End Connections	Pressure Rating (PSI)
VKD	Ball	1/2 – 4	PVC, CPVC, PP	TU (S, T), Sm, F	up to 232
VXE	Ball	1/2 – 6*	PVC, CPVC	TU (S, T), F	up to 232
VEE	Ball	1/2 – 4	PVC	TU (S, T)	232
MP	Compact Ball	1/2 – 2	PVC	S, T	150
TKD	3-Way Ball	1/2 – 2	PVC, CPVC	TU (S, T)	232
VKR	Regulating Ball	1/2 – 2	PVC, PP, PVDF	TU (S,T), Sm, F	up to 232
FK	Butterfly	1-1/2 - 16	Body: PP Disc: CPVC, PP, PVC, PVDF & ABS	F (W, L)	up to 150
FX	Butterfly	1-1/2 - 12	Body: PVC Disc: PP or PVC	F (W, L)	up to 150
FE	Butterfly	1-1/2 - 12	PVC	F (W)	up to 150
VM	Diaphragm	1/2 - 4 20 - 110 (mm)	PVC, CPVC, PP, PVDF	TU (S, T), F, Sp, Sm	150
DV	Diaphragm	1/2 – 6	PVC	F	150
СМ	Compact Diaphragm	1/2 16 – 20 (mm)	PVC, CPVC, PP, PVDF	TU (S, T), Sp, Sm	90
DKD	Diaphragm	1/2 – 2	PVC	TU (S, T), Sp	120
SXE	Ball Check	1/2 – 4	PVC, CPVC	TU (S, T)	232
SSE	Spring-Assisted Check	1/2 – 4	PVC	TU, (S,T)	232
VR	Piston Check	1/2 – 4	PVC	TU (S, T), S, T, F	232 (1/2" to 1") 150 (1-1/4" to 2") 90 (3" to 4")
SC	Swing Check	3 – 8	PVC	F	100 (3") 70 (4" to 8")
VA	Air Release	3/4, 1-1/4, 2	PVC	SU (S, T)	232
RV	Strainer	1/2 – 4	PVC, CPVC	TU (S, T), S, T, F	232 (1/2" to 1") 150 (1-1/4" to 2") 60 (3" to 4")
LV	Lab	1/4	PVC	Т	150
S12/22	Solenoid	1/4 – 1/2	PVC	TU (S,T)	up to 90

TU = True Union, SU = Single Union, S = Socket (IPS), T = Threaded (NPT), F = Flanged (ANSI 150),

W = Wafer, L = Lugged, Si = Spigot (IPS), Sm = Socket (Metric), Sp = Spigot (Metric)

^{*4&}quot; with venturied ends

VALVE SELECTION

As is the case with other thermoplastic components in a processing system, valves must be selected based on the characteristics of the fluid medium, the system's operating parameters, and its intended function for a particular application. Certain valve types are more suitable than others for on/off service, throttling or modulating, automation, back flow prevention, etc.

Fluid Properties

Like other system components, the material that is used in valve construction should be chosen depending on the chemistry of the fluid. Different plastics have varying abilities to handle certain chemical types. In a given piping system, the material selected for a valve is typically the same as what is specified for the pipe and fittings. However, since valves contain other components such as seats and seals, particular attention should be paid to their material selection. Please consult IPEX's Chemical Resistance Guide for specific material-fluid compatibilities. Abrasiveness, viscosity, and other fluid properties are sometimes important to consider as well.

Temperature and Pressure

As with pipe and fittings, the strength of a valve is limited by the operating temperature and pressure of the system. However, the type of failure that can be expected in valves is different than that of other piping components as valves typically contain seats, seals, and moving components. These critical points can be potentially displaced if the seat or seal housing softens or distorts due to excessive prolonged heat. This can result in a loss of pressure capacity if these contact points lose competence. During the design, manufacture, and assembly of IPEX valves, careful attention is given to these vital connections in order to compensate for reduced performance under extreme conditions.

Valves are typically pressure rated by style; however size, material type, and temperature play significant roles in determining the pressure capabilities of a specific valve. Since they are often constructed of more than one material type, it is important to review the pressure-temperature relationship. General pressure ratings are given assuming an ambient operating temperature of 73°F (23°C), above which the maximum pressure capability decreases. To account for this, detailed pressure-temperature graphs are included in this manual for each valve type.

Flow Rate

An important consideration in valve selection is the intended flow rate of the system. The flow rate of a particular valve is expressed as a C_V coefficient. This value represents the number of gallons per minute (GPM) that will flow through a fully open valve with a 1 PSI pressure drop at 68°F (20°C). These values are determined from an industry standard testing procedure which uses water as the flowing media (specific gravity of 1.0). Tables showing acceptable flow rates for different size valves are included in this manual for each valve type.

Vacuum Service

Many of our valves have been tested to determine their ability to withstand service under vacuum conditions. Our VKD ball, FK butterfly and VM diaphragm valves have been tested to hold a vacuum in excess of 29 inches of mercury. Please contact the IPEX technical services department for specific vacuum service applications.

Other Considerations

Occasionally it may be important to select a particular valve based on spatial constraints or weight limitations. Some compact light weight valves are better suited to applications where space is limited and/or pipe support is not possible. Requirements such as automation or remote operation may also demand the selection of a particular valve. For details regarding actuated ball and butterfly valves, please refer to the IPEX Industrial technical manual entitled "Quarter Turn Automation".

Silicone Free

IPEX now offers silicone free valves. These valves are expertly cleaned within a new clean room facility, conforming to ISO 14644-1 clean room standards. The facility utilizes a three stage chemical cleaning process, including ultrasonic cleaning tanks, to ensure all valve components are free from traces of silicone. The valve is then dried using a compressed air system and bagged within a dual skin silicone free package to prevent contamination. In addition, a non-silicone lubricant is used for both the ball valves and butterfly valves to maintain efficient operation over the lifetime of the system. With this technology, valves are supplied to you silicone free by IPEX.

FURTHER INFORMATION

System Design

The necessity and selection of valves for use in a piping system is largely a function of the overall process requirements. For detailed information regarding the design process and associated considerations, please refer to the IPEX Industrial technical manual entitled "Vinyl Process Piping Systems".

Installation Considerations

For detailed information regarding piping installation and associated considerations, please refer to the IPEX Industrial technical manual entitled "Vinyl Process Piping Systems". For particular valve installation instructions, please refer to the specific valve type section in this manual.

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial technical manual entitled "Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points

- Never test thermoplastic piping systems with compressed air or other gases including air-overwater boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

IPEX's vented ball valves are designed to protect the ball and body from a failure due to potential off-gassing. When a ball valve is cycled to the closed position, liquid may be trapped in the ball cavity. Chemicals such as sodium hypochlorite (NaOCI), hydrogen peroxide (H₂O₂), and aqua ammonia (NH₃) may off-gas and cause a potentially dangerous pressure build up. Without proper pressure relief, this may cause the valve to prematurely fail.

IPEX vented ball valves feature a small vent hole on the upstream side of the ball that will relieve the pressure from the ball cavity while maintaining a positive seal on the downstream side.

Maintenance

IPEX valves are designed and manufactured to high quality standards with long service life expectancy. However, if maintenance is required, please refer to the specific valve type section in this manual for instructions.

SECTION TWO: BALL VALVES

VKD SERIES BALL VALVES

IPEX VKD Series Ball Valves offer a variety of advanced features such as the patented seat stop carrier, a high quality stem and ball support system, and a multifunctional locking handle. The new DUAL BLOCK® system locks the union nuts preventing backoff due to vibration or thermal cycling. Deep grooves, thick o-rings, and cushioned Teflon® seats contribute to strong seals at pressures up to 232 PSI while an integral mounting flange and support bracketing combine for simple adaptation for actuation and anchoring. VKD Series Ball Valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

VALVE AVAILABILITY

BODY MATERIAL	PVC, CPVC, PP
SIZE RANGE	1/2" through 4"
PRESSURE	up to 232 PSI, 150 PSI (PP)
SEATS	Teflon® (PTFE)
SEALS	EPDM or FKM
END CONNECTIONS	Socket (IPS), Threaded (FNPT) Socket (Metric)

 $\textbf{Note:} \ \mathsf{PVDF} \ \mathsf{valves} \ \mathsf{available} \ \mathsf{on} \ \mathsf{request}$

ASTM D1784 ASTM D2464 ASTM D2466 ASTM D2467 ASTM D4101 ASTM F437 ASTM F439 ASTM F1498

ANSI B1.20.1

ISO 11922-1

Sample Specification

1.1 Material

- The valve body, stem, ball and unions shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.
- or The valve body, stem, ball and unions shall be made of Corzan® CPVC compound which shall meet or exceed the requirements of 23447 according to ASTM D1784.
- or The valve body, stem, ball and unions shall be made of stabilized PP homopolymer compound, also containing a RAL 7032 pigment, which shall meet or exceed the requirements of Type I Polypropylene according to ASTM D4101.

1.2 Seats

The ball seats shall be made of Teflon® (PTFE).

1.3 Seals

- · The o-ring seals shall be made of EPDM.
- or The o-ring seals shall be made of FKM.

2.0 Connections

2.1 Socket style

- The IPS socket PVC end connectors shall conform to the dimensional standards ASTM D2466 and ASTM D2467.
- or The IPS socket CPVC end connectors shall conform to the dimensional standard ASTM F439.
- or The Metric socket PP end connectors shall conform to the dimensional standard ISO 11922-1.

2.2 Threaded style

- The female NPT threaded PVC end connectors shall conform to the dimensional standards ASTM D2464, ASTM F1498, and ANSI B1.20.1.
- or The female NPT threaded CPVC end connectors shall conform to the dimensional standards ASTM F437, ASTM F1498, and ANSI B1.20.1.
- or The female NPT threaded PP end connectors shall conform to the dimensional standards ASTM F1498, and ANSI B1.20.1.

3.0 Design Features

- The valve shall be double blocking with union ends.
- All valves shall be full port.
- · All valves shall allow for bi-directional flow.

- The valve body shall be single end entry with a threaded carrier (ball seat support).
- The threaded carrier shall be adjustable with the valve installed.
- The valve body shall have an expansion and contraction compensating groove on the molded end.
- The valve body, union nuts, and carrier shall have deep square style threads for increased strength.
- The ball and stem shall be machined smooth to minimize wear on valve seats and seals.
- All valve seats shall have o-ring backing cushions to compensate for wear and prevent seizure of the ball.
- The stem design shall feature double o-ring seals as well as a safety shear point above the o-rings.
- All valves shall have integrally molded mounting features for actuation.
- All valves shall have integrally molded support bracketing for anchoring.
- 2-1/2" to 4" valves handle shall incorporate a transparent PVC plug and tag holder for valve identification.

3.1 Pressure Tested

 All valves shall have been pressure tested in both the open and closed positions by the manufacturer.

3.2 Pressure Rating

- All PVC and CPVC valves shall be rated at 232 PSI at 73°F.
- All PP valves shall be rated at 150 PSI at 73°F.

3.3 Markings

 All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.4 Color Coding

- All PVC valves shall be color-coded dark gray.
- or All CPVC valves shall be color-coded light gray.
- or All PP valves shall be color-coded beige gray.

4.0 NSF Listings

- All PVC and CPVC valves shall be listed with NSF to Standard 61 for potable water.
- All PVC and CPVC valves shall be listed with NSF to Standard 372 for lead content requirements.
- **5.0** All valves shall be Xirtec® PVC, Xirtec® CPVC, or PP by IPEX or approved equal.

Valve Selection

Size (inches)	Body Material	Seal Material	IPEX Part Nur IPS Socket FN	mber IPT Threaded	Pressure Rating	
	PVC	EPDM FKM	253067 253068			Body Material:
3/8	CPVC	EPDM	253069			☐ PVC ☐ CPVC
3/6		FKM EPDM	253070	_		☐ PP ☐ PVDF
	PP	FKM	-	-		
	PVC	EPDM FKM	053461 053467			
1/2	CPVC	EPDM	053473			Size (inches):
1, 2		FKM EPDM	253008 053513*	053519*		□ 1/2 □ 2
	PP	FKM	053525*	253002*		□ 3/4 □ 2-1/2
	PVC	EPDM FKM	053462 053468		232 psi for	
3/4	CPVC	EPDM	053474		PVC and	☐ 1 ☐ 3
σ, .		FKM EPDM	253009 053614*	053520*	CPVC socket or threaded	□ 1-1/4 □ 4
	PP	FKM	053526*	253003*		☐ 1 - 1/2
	PVC	EPDM FKM	053463 053469			☐ 1 1/ Z
1	CPVC	EPDM	053475			
		FKM EPDM	253010 053515*	053521*		Seals:
	PP	FKM	053527*	253004*		☐ EPDM
	PVC	EPDM FKM	053464 053470			
1-1/4	CPVC	EPDM	253476 253011			☐ FKM
	PP	FKM EPDM	053516*	053522*		
		FKM EPDM	053528* 053465	253005*		
	PVC	FKM	053471			End Connections:
1-1/2	CPVC	EPDM FKM	053477 253012			Socket (IPS)
	PP	EPDM	053517*	053523*		☐ Threaded (FNPT)
		FKM EPDM	053529* 053466	253006*		☐ Flanged (ANSI 150)
	PVC	FKM	053472			-
2	CPVC	EPDM FKM	053478 253013			Socket (Metric)
	PP	EPDM	053518*	053524*	150 psi for	
	D) (C	FKM EPDM	053530* 053539	253007* -	PP socket or threaded	
2-1/2	PVC	FKM	053542	-	triledded	IPEX Part Number:
	CPVC	EPDM FKM	053545 053548	_		
	PVC	EPDM FKM	053540 053543	_		
3	CPVC	EPDM	053546	_		
		FKM EPDM	053549 053541	_		
4	PVC	FKM	053544	-		
7	CPVC	EPDM FKM	053547 053550	_		
			000000			

^{*} Socket (Metric)

Flanged valves available on request

^{2-1/2&}quot; - 4" threaded valves available on request

Valve Selection - Vented

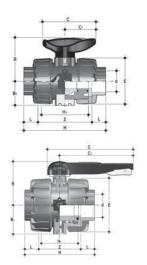
Vented ball valves are used with volatile liquids such as Hydrogen Peroxide (H_2O_2) and sodium hypochlorite (NaClO) to relieve a potentially dangerous pressure build-up in the ball cavity, when the valve is closed.

Size (inches)	Body Material	Seal Material	IPEX Part	Number	Pressure Rating
3/8	PVC		3530	028	
	CPVC		3530		
1/2	PVC		3530	083	
1/ 2	CPVC		353	021	
3/4	PVC		3530	084	
3/4	CPVC		3530	022	
1	PVC		3530	085	
I	1 PP		3530		
1 1//	PVC		053503		
1-1/4	1-1/4 CPVC		353024		
1-1/2	PVC	FNIVI	053	504	socket or threaded
1-1/2	CPVC		353025		
PVC 2			053505		•
2	CPVC		353026		
2-1/2	PVC		053506	_	
2-1/2	CPVC		353027	-	
3	PVC		353086	_	
3	CPVC		353029	-	
	PVC		053562	_	
4	CPVC		353030	-	

Flanged valves available on request 2-1/2" – 4" threaded valves available on request

Во	dy Material:	
	PVC	CPVC
Siz	e (inches):	
	1/2	2
	3/4	2-1/2
	1	3
	1-1/4	4

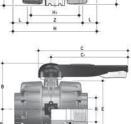
Se	eals:	
	FKM	


☐ 1-1/2

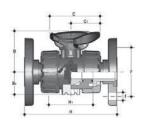
End	Connections:
	Socket (IPS)

Flanged	(ANSI	150

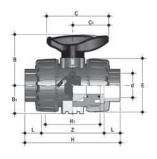
IDEA	Dart	Nium	har


Dimensions

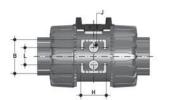
IPS Socket Connections - Dimension (inches)

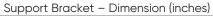

Size	d	Н	L	Z	H ₁	Е	B ₁	В	C ₁	С
3/8	0.68	4.61	0.77	3.07	2.56	2.13	1.14	2.13	1.57	2.64
1/2	0.84	4.61	0.89	2.83	2.56	2.13	1.14	2.13	1.57	2.64
3/4	1.05	5.08	1.00	3.07	2.76	2.56	1.36	2.56	1.93	3.35
1	1.32	5.59	1.13	3.33	3.07	2.87	1.54	2.74	1.93	3.35
1-1/4	1.66	6.38	1.26	3.86	3.46	3.39	1.81	3.25	2.52	4.25
1-1/2	1.90	6.77	1.38	4.02	3.66	3.86	2.05	3.50	2.52	4.25
2	2.38	7.83	1.50	4.83	4.37	4.80	2.44	4.25	2.99	5.28
2-1/2	2.88	9.25	1.75	5.75	5.24	6.46	3.43	6.46	6.89	8.86
3	3.50	10.63	1.89	6.85	5.87	7.99	4.13	6.97	10.71	12.87
4	4.50	12.13	2.26	7.60	6.57	9.37	5.08	7.68	12.99	15.16

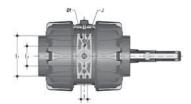
Female NPT Threaded Connections - Dimension (inches)


Size	R	Н	L	Z	H ₁	Е	B ₁	В	C ₁	С
3/8	3/8-UPT	4.06	0.54	2.98	2.56	2.13	1.14	2.13	1.57	2.69
1/2	1/2-NPT	4.37	0.70	2.97	2.56	2.13	1.14	2.13	1.57	2.64
3/4	3/4-NPT	4.61	0.71	3.19	2.76	2.56	1.36	2.56	1.93	3.35
1	1-NPT	5.31	0.89	3.54	3.07	2.87	1.54	2.74	1.93	3.35
1-1/4	1-1/4-NPT	6.02	0.99	4.05	3.46	3.39	1.81	3.25	2.52	4.25
1-1/2	1-1/2-NPT	6.14	0.97	4.20	3.66	3.86	2.05	3.50	2.52	4.25
2	2-NPT	7.32	1.17	4.99	4.37	4.80	2.44	4.25	2.99	5.28
2-1/2	2-1/2-NPT	9.25	1.31	6.64	5.24	6.46	3.43	6.46	6.89	8.86
3	3-NPT	10.63	1.40	7.83	5.87	7.99	4.13	6.97	10.71	12.87
4	4-NPT	12.13	1.48	9.17	6.57	9.37	5.08	7.68	12.99	15.16
4	4 141 1	12.10	1.40	7.17	0.57	7.57	3.00	7.00	12.//	13.10

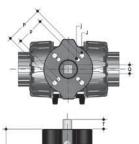
VKD Flanged Connections - Dimension (inches)


Size	Н	H ₁	В	B ₁	С	C ₁	F		U
1/2"	5.63	2.56	2.13	1.14	2.64	1.58	2.37	0.63	0.16
3/4"	6.77	2.76	2.56	1.36	3.35	1.93	2.75	0.63	0.16
1"	7.36	3.07	2.74	1.54	3.35	1.93	3.13	0.63	0.16
11/4"	7.48	3.47	3.25	1.81	4.25	2.52	3.5	0.63	0.16
11/2"	8.35	3.66	3.5	2.05	4.25	2.52	3.87	0.63	0.16
2"	9.21	4.37	4.25	2.44	5.28	2.99	4.75	0.75	0.16


Note: Dimensions based on VKD ANSI 150 Flanging Kit

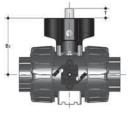

Metric Socket Connections - Dimension (inches)

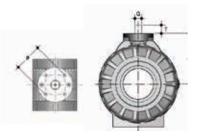
								/		
Size	d	Н	L	Z	H ₁	Е	B ₁	В	C ₁	С
20mm	0.79	4.02	0.57	2.87	2.56	2.13	1.14	2.13	1.57	2.64
25mm	0.98	4.49	0.63	3.23	2.76	2.56	1.36	2.56	1.93	3.35
32mm	1.26	4.96	0.71	3.54	3.07	2.87	1.54	2.74	1.93	3.35
40mm	1.57	5.55	0.81	3.94	3.35	3.39	1.81	3.25	2.52	4.25
50mm	1.97	6.46	0.93	4.61	3.66	3.86	2.05	3.50	2.52	4.25
63mm	2.48	7.83	1.08	5.67	4.37	4.80	2.44	4.25	2.99	5.28



Size	J	В	L	Н
1/2	M4	1.24	0.79	1.06
3/4	M4	1.57	0.79	1.18
1	M4	1.57	0.79	1.18
1-1/4	M6	1.97	1.18	1.38
1-1/2	M6	1.97	1.18	1.38
2	M6	2.36	1.18	1.57

Support Bracket - Dimension (inches)

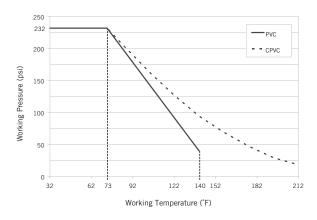

Size	J			11	I2
2-1/2	M6	0.25	0.69	3.54	2.04
3	M8	0.33	0.83	4.43	2.48
4	M8	0.33	0.83	5.39	2.64

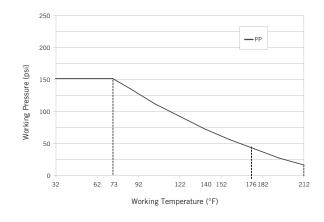

					,		
Size	B ₂	р	Р	j	J	Т	Q
1/2	2.28	F03	F04	0.22	0.22	0.47	0.43
3/4	2.89	F03	F05	0.22	0.26	0.47	0.43
*3/4	2.89	FC)4	0.	22	0.47	0.43
1	2.91	F03	F05	0.22	0.26	0.47	0.43
*1	2.91	FC)4	0.	22	0.43	0.43
1-1/4	3.82	F05	F07	0.26	0.33	0.63	0.55
1-1/2	4.09	F05	F07	0.26	0.33	0.63	0.55
2	4.49	F05	F07	0.26	0.33	0.63	0.55

*Available upon request.

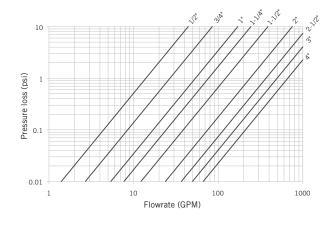
Actuation Pad – Dimension (inches)

	, 10 10 10 110 1		. ()	
Size	Р	J	Т	Q
2-1/2	F07	0.35	0.63	0.55
3	F07	0.35	0.63	0.55
4	F07	0.35	0.75	0.67




Weights

Approximate	Weight	(lbs)
-------------	--------	-------


	Approximate Weight (lbs)								
Size (i	Size (inches) IPS / Metric So			ket FNPT Threaded					
IPS	Metric	PVC	CPVC	PP	PVC	CPVC	PP		
1/2	20mm	0.47	0.51	0.32	0.46	0.50	0.31		
3/4	25mm	0.76	0.82	0.48	0.74	0.79	0.50		
1	32mm	0.99	1.06	0.66	0.99	1.06	0.67		
1-1/4	40mm	1.58	1.70	1.06	1.49	1.61	1.01		
1-1/2	50mm	2.15	2.31	1.50	2.11	2.26	1.43		
2	63mm	3.77	4.06	2.57	3.68	3.95	2.50		
2-1/2	-	9.68	10.5	-	9.69	10.5	-		
3	-	15.9	17.3	-	16.0	17.4	-		
4	-	24.4	26.9	-	24.5	27.0	-		

Pressure - Temperature Ratings

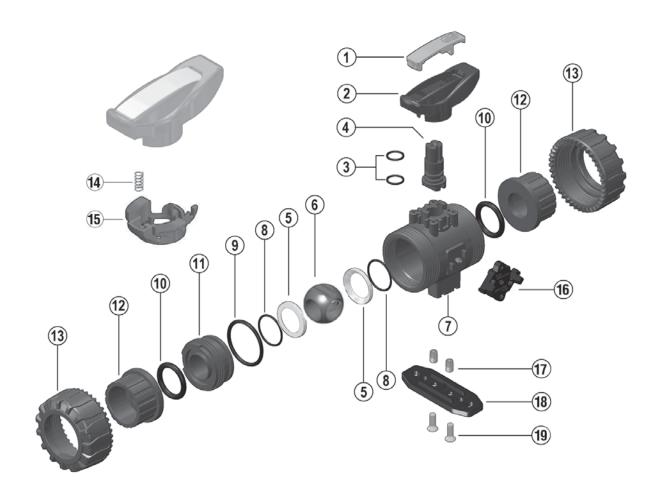
Pressure Loss Chart

Flow Coefficients

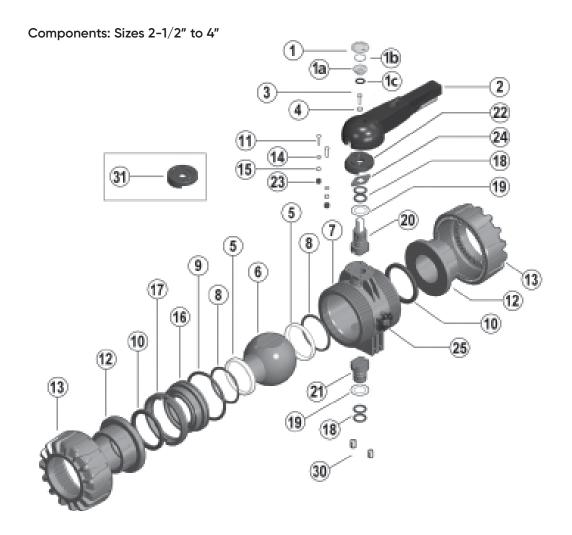
Size (in)	C _v
1/2	14.0
3/4	27.0
1	53.9
1-1/4	77.0
1-1/2	123
2	238
2-1/2	368
3	497
4	665

Customize VKD EasyFit

It is often necessary to customize a valve by labelling or tagging it in order to mark, protect and identify it.


The 2-1/2" to 4" VKD is equipped with a specially designed water resistant module for the customization of the valve. The module is housed in the handle and is composed of a transparent PVC service plug and a white tag holder. The transparent plug can be easily removed to be used for self-labelling on its blank side. Self labelling can be done in several ways, but we recommend designing and printing custom labels through the EasyFit Labelling System (LSE).

- A Transparent PVC Service Plug
- B PVC Tag Holder
- C EasyFit Multifunction Handle


Components: Sizes 1/2" to 2"

#	Component	Material	Qty
1	insert	PVC / CPVC / PP	1
2	handle	PVC / CPVC / PP	1
3	stem o-ring	EPDM / FKM	2
4	stem	PVC / CPVC / PP	1
5	ball seat	PTFE	2
6	ball	PVC / CPVC / PP	1
7	body	PVC / CPVC / PP	1
8	ball seat o-ring	EPDM / FKM	2
9	body o-ring	EPDM / FKM	1
10	socket o-ring	EPDM / FKM	2

#	Component	Material	Qty
11	carrier with stop ring	PVC / CPVC / PP	1
12	end connector	PVC / CPVC / PP	2
13	union nut	PVC / CPVC / PP	2
14*	spring	SS	1
15*	handle lock	GRPP	1
16	DUAL BLOCK®	POM	1
17*	bracket bushing	SS / brass	2
18*	mounting plate	GRPP	1
19*	screw	SS	2

^{*} Optional Accessories

#	Component	Material	Qty
1 a,b,c	transparent service plug	PE	1
2	handle	PVC	1
3	bolt	SS	1
4	washer	SS	1
5	ball seat	PTFE	2
6	ball	PVC / CPVC	1
7	body	PVC / CPVC	1
8	ball seat o-ring	EPDM / FKM	2
9	body o-ring	EPDM / FKM	1
10	socket seal	EPDM / FKM	2
11	bolt	SS	2
12	end connector	PVC / CPVC	2
13	union nut	PVC / CPVC	2
14	washer	SS	2
15	nut	SS	2
16	carrier	PVC / CPVC	1
16	carrier	PVC / CPVC	1

#	Component	Material	Qty
17	stop ring	PVC / CPVC	1
18	stem o-ring	EPDM / FKM	4
19	bushing	PTFE	2
20	upper stem	PVC / CPVC & SS	1
21	lower stem	PVC / CPVC	1
22	pad	GRPP	1
23	protective cap	PE	2
24	spring	SS	2
25	nut block	GRPP	2
26	cover	PP	1
27	nut block button	GRPP	1
28	protective cap	PE	1
29	screw	nylon	2
30	bracket bushing	brass	2
31	actuation pad	GRPP	1

Installation Procedures

- Remove the union nuts (part #13 on previous pages) and slide them onto the pipe.
- 2. Please refer to the appropriate connection style sub-section:
 - a. For socket style, solvent cement or fuse the end connectors (12) onto the pipe ends. For correct solvent cementing procedure, please refer to the section entitled, "Joining Methods Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Be sure to allow sufficient cure time before continuing with the valve installation.
 - For threaded style, thread the end connectors (12) onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods – Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
- 3. Open and close the valve to ensure that the carrier (11 or 16) is at the desired adjustment. If adjustment is required, ensure that the valve is in the closed position then remove the insert tool (1) from the handle (2). For sizes 2-1/2" to 4", use the tool that accompanies the valve. Line up the moldings on the tool with the slots in the carrier. Tighten or loosen to the desired position then replace the tool on the handle.
- 4. Ensure that the valve is in the closed position, and that the socket o-rings (10) are properly fitted in their grooves. If anchoring is required, insert the bracket bushings (17) into the bottom of the valve (sizes 1/2" to 2" only). Carefully place the valve in the system between the two end connections and fix if necessary.
- 5. Tighten the union nut on the side opposite to that which is marked "ADJUST". Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Overtightening may damage the threads on the valve body and/ or the union nut, and may even cause the union nut to crack.
- Tighten the union nut on the side marked "ADJUST". Tightening
 the union nuts in this order results in the best possible valve
 performance due to optimum positioning and sealing of the
 ball and seat support system.
- 7. Open and close the valve to again ensure that the cycling performance is adequate. If adjustment is required, place the valve in the closed position, loosen the union nuts, remove the valve from the system, and then continue from Step 3.
- 8. Engage the Dual Block® system by affixing the molded piece (16, sizes 1/2" to 2") to the side of the valve body or by turning the red knob (27, sizes 2-1/2" to 4") to the locked position. This feature will prevent back-off of the union nuts during operation.

2-1/2" - 4" Dual Block® Mechanism

LOCK

Valve Maintenance

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the line. Be sure to depressurize and drain the valve and isolated branch.
- If necessary, detach the valve from the support structure by disassembling the connections to the optional bracket on the bottom of the valve body (7).
- 3. Unlock the Dual Block® system by compressing the two ends of the molded piece (16, sizes 1/2" to 2") or by turning the red knob (27, sizes 2-1/2" to 4") to the unlocked position. Loosen both union nuts (13) and drop the valve out of the line. If retaining the socket o-rings (10), take care that they are not lost when removing the valve from the line.
- 4. Place the valve in the open position then line up the moldings on the wrench tool (1, sizes 1/2" to 2") with the slots in the carrier (found on the side marked "ADJUST"). Loosen and remove the carrier (11 or 16).
- 5. Carefully press the ball (6) out of the valve body, taking care not to score or damage the outer surface.
- 6. Remove the handle (2) by pulling upwards (sizes 1/2" to 2") or by removing transparent service plug (1 a,b,c), bolt (3) and washer (4) (sizes 2-1/2" to 4").
- 7. On sizes 2-1/2" to 4", remove the throttling pad (22) by loosening and removing the bolts (11), washers (14), nuts (15), and caps (23).
- 8. Press the stem (4 or 20) into the valve body from above. On sizes 2–1/2" to 4", remove the lower stem (21) by pushing it into the valve body from below.
- 9. The stem o-rings (3 or 18), body o-ring (9), ball seats (5), ball seat o-rings (8), and bushings (19, sizes 2-1/2" to 4") can now be removed and/or replaced.

Note: It is not typically necessary to disassemble the Dual Block® components.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- Replace the stem o-rings (3 or 18), body o-ring (9), ball seat o-rings (8), ball seats (5), and bushings (19, sizes 2-1/2" to 4") in their proper positions.
- Insert the stem (4 or 20) into position from inside the valve body (7). On sizes 2-1/2" to 4", insert the lower stem (21) as well.
- On sizes 2-1/2" to 4", replace the throttling pad (22) and affix in position using the bolts (11), washers (14), and nuts (15). Replace the caps (23) over the nuts.
- 4. Replace the handle (2). On sizes 2-1/2" to 4", affix using the bolt (3) and washer (4), then replace the transparent service plug (1 a,b,c).
- 5. Carefully insert the ball (6) into the valve body, taking care not to score or damage the outer surface. **Ensure** that the valve handle and ball position correspond to the same operating position.
- 6. Insert the threaded carrier (11 or 16) and tighten into the valve body. Use the wrench tool to sufficiently tighten.
- Place the end connectors (12) into the union nuts (13), then thread onto the valve body taking care that the socket o-rings remain properly fitted in their grooves.
- 8. Engage the Dual Block® system by affixing the molded piece (16, sizes 1/2" to 2") to the side of the valve body or by turning the red knob (27, sizes 2-1/2" to 4") to the locked position.

Testing & Operation

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

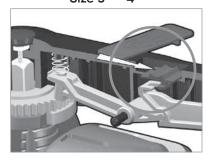
- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

For safety reasons, please contact IPEX customer service and technical support when using volatile liquids such as hydrogen peroxide (H2O2) and sodium hypochlorite (NaClO). These liquids may vaporize causing a potentially dangerous pressure increase in the dead space between the ball and the valve body. Special VKD ball valves are available for these types of critical applications.

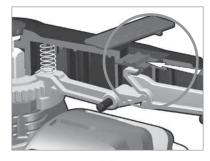
Note: The VKD handle incorporates a locking mechanism that prevents unintentional rotation. When engaged, the spring-loaded handle release is locked and the valve cannot be cycled. A padlock can be installed through this portion of the handle as an additional safety precaution.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

Size 2-1/2"



FREE



LOCK

Size 3" - 4"

FREE

LOCK

The IPEX EasyFit VXE Series True Union Ball Valves represent the latest innovation in thermoplastic ball valve manufacturing technology. Developed in collaboration with Giugiaro Design, the VXE Series replaces the well received VX Series with new and cutting edge features and is designed for industrial, general purpose and O.E.M. applications. This valve features an ultra-compact double block design, and full port bi-directional operation. The true union design allows the valve to be easily removed from the piping system and be fully serviced. A threaded seat stop carrier provides improved seal integrity under tough service conditions while the EasyFit multifunction handle doubles as a tool for ball seat adjustment, and for tightening union nuts precisely.

VXE ball valves are part of our complete system of IPEX pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

VALVE AVAILABILITY

BODY MATERIAL	PVC, CPVC
SIZE RANGE	1/2" through 6"*
Pressure	up to 232 psi
SEATS	Teflon® (PTFE)
SEALS	EPDM or FKM
END CONNECTIONS	Socket (IPS), Threaded (FNPT), Flanged (ANS1150)

^{* 4&}quot; with venturied ends

ASTM D1784 ASTM D2464 ASTM D2466 ASTM D2467 ASTM F437 ASTM F439 ASTM F1498

ANSI B1.20.1

SAMPLE SPECIFICAITONS

Sample Specifications

1.0 Ball Valves - VXE

1.1 Material

- The valve body, stem, ball and unions shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.
- or The valve body, stem, ball and unions shall be made of Corzan® CPVC compound which shall meet or exceed the requirements of 23447 according to ASTM D1784.
- These compounds shall be listed with NSF to Standard 61 for potable water.
- These compounds shall be listed with NSF to Standard 372 for lead content requirements.

1.2 Seats

The ball seats shall be made of Teflon® (PTFE).

1.3 Seals

- The o-ring seals shall be made of EPDM.
- or The o-ring seals shall be made of Fluoropolymer (FKM).

2.0 Connections

2.1 Socket Style

- The IPS socket PVC end connectors shall conform to the dimensional standards ASTM D2466 and ASTM D2467.
- or The IPS socket CPVC end connectors shall conform to the dimensional standard ASTM F439.

2.2 Threaded Style

- The female NPT threaded PVC end connectors shall conform to the dimensional standards ASTM D2464, ASTM F1498, and ANSI B1.20.1.
- or The female NPT threaded CPVC end connectors shall conform to the dimensional standards ASTM F437, ASTM F1498, and ANSI B1.20.

2.3 Flanged Style

- The ANSI 150 flanged PVC end connectors shall conform to the dimensional standard ANSI B16.5
- or The ANSI 150 flanged CPVC end connectors shall conform to the dimensional standards ANSI B16.5

3.0 Design Features

- · The valve shall be double blocking with union ends.
- All sizes 1/2" through 4" shall be full port.
- · All sizes shall allow for bi-directional flow.
- The valve body shall be single end entry with a threaded carrier (ball seat support).
- The valve body shall have an expansion and contraction compensating groove on the molded end.
- The valve body, union nuts, and carrier shall have deep square style threads for increased strength.
- The ball shall be machined smooth to minimize wear on valve seats.
- The stem design shall feature a shear point above the o-ring to maintain system integrity in the unlikely event of a stem breakage.
- The handle shall incorporate a tool for adjustment of the threaded carrier.
- The handle shall incorporate a tool for adjustment of union nuts.
- The handle shall incorporate a transparent PVC plug and tag holder for valve identification.

3.1 Pressure Tested

 All valves shall have been pressure tested in both the open and closed positions by the manufacturer.

3.2 Pressure Rating

- Socket and threaded valves shall be rated at 232 psi at 73°F.
- Flanged valves shall be rated at 150psi at 73°F.

3.3 Markings

 All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.4 Color Coding

- All PVC valves shall be color-coded dark gray.
- or All CPVC valves shall be color-coded light gray.

4.0 NSF Listings

- All valves shall be listed with NSF to Standard 61 for portable water.
- All valves shall be listed with NSF to Standard 372 for lead content requirements.
- **5.0** All valves shall be Xirtec® PVC or Xirtec® CPVC by IPEX or approved equal.

Body Material:

Valve Selection

							body Material	•
Size	Body	O-ring		IPEX Pai	rt Number		☐ PVC	☐ CPVC
(inches)	Material	Material	IPS	FNPT	ANSI	Pressure		
		EDDIA	Socket	Threaded	Flanged	Rating		
	PVC	EPDM		3001	353627			
1/2		FKM		3002	353637	-	Size (inches):	
	CPVC	EPDM		3041	353651		□ 1/2	□ 2
		FKM		3042	353661		L 1/2	
	PVC	EPDM		3003	353628		☐ 3/4	2-1/2
3/4		FKM		3004	353638			
	CPVC	EPDM		3043 3044	353652		∐ 1	☐ 3
		FKM			353662		<u> </u>	
	PVC	EPDM		3005 3004	353629	232 psi for		_
1		FKM		3006	353639	socket or	☐ 1-1/2	□ 6
	CPVC	EPDM FKM		3045 3046	353653 353663	threaded		
		EPDM		3048	353630			
	PVC	FKM		3007	353640		Seals:	
1-1/4								
	CPVC	EPDM FKM		3047 3048	353654 353664		☐ EPDM	
							☐ Fluoropolyr	nor (EKM)
	PVC	EPDM FKM	353009 353010		353631 353641		гиогорогуг	Hei (FKI*I)
1-1/2						•		
	CPVC	EPDM FKM		3049 3050	353655 353665			
		EPDM		3011	353632		5 10	
	PVC	FKM		3012	353642		End Connection	ons:
2		EPDM		3051	353656		☐ Socket (IPS)
	CPVC	FKM		3052	353666			
		EPDM	353623	-	353633		☐ Threaded (FNPI)
	PVC	FKM	353624	_	353643		☐ Flanged (AI	NSI 150)
2-1/2		EPDM	353647	- -	353657			,
	CPVC	FKM	353648	_	353667			
		EPDM	353013	353017	353634			
	PVC	FKM	353014	353018	353644	150 psi for		
3		EPDM	353053	353057	353658	flanged	IPEX Part Num	her:
	CPVC	FKM	353054	353058	353668		ii EX i di c Naiii	DCI.
		EPDM	353015	353019	353635			
	PVC	FKM	353016	353020	353645			
4	05:70	EPDM	353055	353059	353659	-		
	CPVC	FKM	353056	353060	353669			
	D) (O	EPDM	353625	-	353636			
,	PVC	FKM	353626	-	353646			
6	00.40	EPDM	353649	-	353660			
	CPVC	FKM	353650	-	353670			

Valve Selection - Vented

Vented ball valves are used with volatile liquids such as Hydrogen Peroxide (H_2O_2) and sodium hypochlorite (NaClO) to relieve a potentially dangerous pressure build-up in the ball cavity, when the valve is closed.

Size	Body	Seal		EX Part Numb		Pressure
(inches)	Material	Material	IPS Socket	FNPT Threaded	ANSI 150 Flanged	Rating
1/2	PVC		35	3031	_	
1/ 2	CPVC		353	3067	-	
7//	PVC		353	3032	_	
3/4	CPVC		353	3068	-	
1	PVC		353	3033	_	
I	CPVC		353	3069	-	
1-1/4	PVC		353	3034	_	
1-1/4	PP		353	3070	-	
1-1/2	PVC		353	3035	_	
1-1/2	CPVC	FKM	35	3071	232 psi for socket or	
2	PVC	FKIYI	353	3036	_	threaded
2	CPVC		353	3072	-	
2.1/2	PVC		353037	_	353063	
2-1/2	CPVC		353073	-	353079	
3	PVC		353038	353040	353064	
3	CPVC		353074	353076	353080	
4	PVC		353039	353061	353065	
4	CPVC		353075	353077	353081	
6	PVC		353086	_	353066	
0	CPVC		353029	-	353082	

SIZ	e (inches):		
	1/2		2
	3/4		2-1/2
	1		3
	1-1/4		4
	1-1/2		6
	d Connections	s:	
Ш	Socket (IPS)		
	Threaded (FN	PT)	
	Flanged (ANS	I 150)	
IPE	X Part Numbe	er:	

Size (inches).

Dimensions

Size	d	L	Z	Н	Е	В	С	C1
1/2	0.84	0.89	2.01	3.78	2.13	1.93	2.52	0.79
3/4	1.05	1.00	2.13	4.13	2.48	2.44	3.07	0.91
1	1.32	1.13	2.34	4.61	2.83	2.80	3.43	1.06
1-1/4	1.66	1.26	2.83	5.35	3.35	3.23	4.02	1.18
1-1/2	1.90	1.38	3.03	5.79	3.94	3.62	4.29	1.30
2	2.38	1.50	3.84	6.85	4.65	4.33	5.24	1.54

VXE IPS Socket (inches)

VXE NPT Female (inches)

Size	R	L	Z	Н	Е	В	С	C1
1/2	1/2-NPT	0.70	2.14	3.54	2.13	1.93	2.52	0.79
3/4	3/4-NPT	0.71	2.24	3.66	2.48	2.44	3.07	0.91
1	1-NPT	0.89	2.55	4.33	2.83	2.80	3.43	1.06
1-1/4	1-1/4-NPT	0.99	3.02	5.00	3.35	3.23	4.02	1.18
1-1/2	1-1/2-NPT	0.97	3.21	5.16	3.94	3.62	4.29	1.30
2	2-NPT	1.17	4.01	6.34	4.65	4.33	5.24	1.54

VXE ANSI Flanged (inches)

				•			
Size	No of Holes			н	В	С	C1
1/2	4	5/8	2-3/8	5.59	1.93	2.52	0.79
3/4	4	5/8	2-3/4	6.07	2.44	3.07	0.91
1	4	5/8	3-1/8	6.74	2.80	3.43	1.06
1-1/4	4	5/8	3-1/2	7.54	3.23	4.02	1.18
1-1/2	4	5/8	3-7/8	8.29	3.62	4.29	1.30
2	4	3/4	4-3/4	9.60	4.33	5.24	1.54

VXE IPS Socket (inches)

Size	d	L	Z	Н	Е	В	С	C1
2-1/2	2.875	1.75	4.80	8.31	6.18	5.59	8.43	4.53
3	3.5	1.89	5.98	9.76	6.85	5.95	9.41	4.96
4	4.5	2.26	6.61	11.14	8.35	6.87	10.63	5.71
*6	6.625	3.03	18.56	24.62	8.35	6.87	10.63	5.71

^{* 6&}quot; VXE is a 4" with venturied ends

VXE NPT Female (inches)

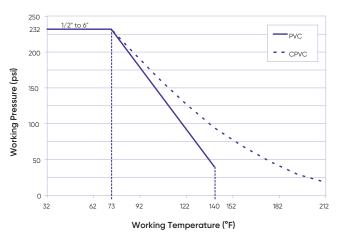
Size	R	L	Z	Н	E	В	С	C1
2-1/2	2-1/2-NPT	1.31	5.69	8.31	6.18	5.59	8.43	4.53
3	3-NPT	1.40	6.97	9.76	6.85	5.95	9.41	4.96
4	4-NPT	1.48	8.18	11.14	8.35	6.87	10.63	5.71

VXE ANSI Flanged (inches)

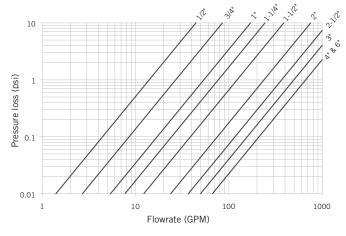
Size	No of Holes		F	Н	В	С	C1
2-1/2	4	3/4	5-1/2	10.93	1.93	2.52	0.79
3	4	3/4	6	12.22	2.44	3.07	0.91
4	8	3/4	7-1/2	13.93	2.80	3.43	1.06
*6	8	7/8	9-1/2	27.48	3.23	4.02	1.18

Note: Flanged connections are assembled at the factory. Due to manufacturing constraints dimension H may not be exactly as shown. The dimensions provided are approximate and should not be used to create precise layouts.

Weights


Approximate Weight (lbs)

C :	PVC		CPVC	
Size (inches)	IPS Socket/ FNPT Threaded	ANSI Flanged	IPS Socket/ FNPT Threaded	ANSI Flanged
1/2	0.39	0.79	0.39	0.79
3/4	0.57	1.11	0.57	1.11
1	0.81	1.63	0.81	1.63
1-1/4	1.25	2.25	1.25	2.25
1-1/2	1.76	2.99	1.76	2.99
2	2.93	4.92	2.93	4.92
2-1/2	6.06	8.64	6.61	9.19
3	7.57	11.36	8.25	12.04
4	12.82	18.09	13.97	19.24
*6	21.42	31.44	23.14	33.74


^{* 6&}quot; VXE is a 4" with venturied ends

Pressure – Temperature Ratings

For Socketed and Threaded Only

Pressure Loss Chart

Flow Coefficients

Size	C_{v}
1/2	14.0
3/4	27.0
1	53.9
1-1/4	77.0
1-1/2	123
2	238
2-1/2	348
3	487.2
4	654.2
*6	654.2

^{*} Not including venturied ends

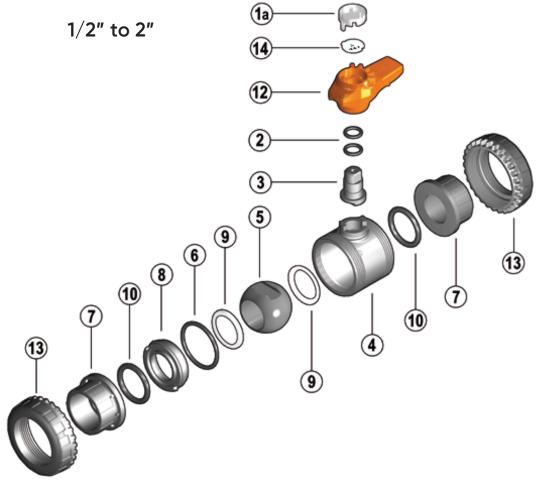
26 IPEX Thermoplastic Valves

Customize VXE Series Ball Valves

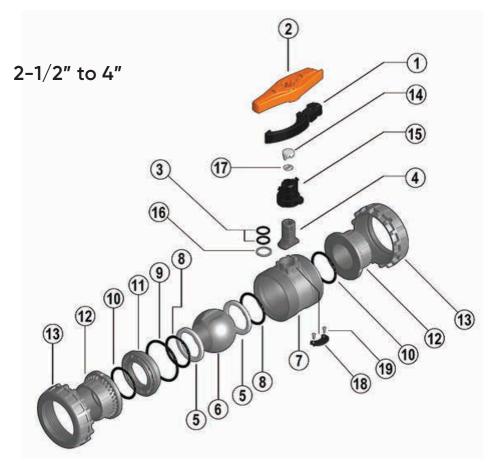
It is often necessary to customize a valve by labelling or tagging it in order to mark, protect and identify it.

VXE EasyFit valves are therefore equipped with a plastic water-resistant module designed to meet this specific need. The module is housed in the handle, is composed of a transparent PVC service plug and a white circle tag holder, IPEX branded on one side. The tag holder is embedded in the plug and can be easily removed to be used for self labelling on its blank side. Self labelling can be done in several ways, but we recommend designing and printing custom labels through the EasyFit Labelling System (LSE).

- **PVC Tag Holder**
- C EasyFit Multifunction Handle



Please contact IPEX customer service for options and pricing on customization of VXE valves with LSE sets


Components

No.	Component	Material	Qty
1a	Transparent Service Plug	PVC	1
2*	Stem O-Ring	EPDM / FKM	2
3*	Stem	PVC / CPVC	1
4	Body	PVC / CPVC	1
5	Ball	PVC / CPVC	1
6*	Body Seal O-Ring	EPDM / FKM	1
7	End Connector	PVC / CPVC	2
8	Support for Ball Seat	PVC / CPVC	1
9*	Ball Seat	PTFE	2
10*	Socket Seal O-Ring	EPDM / FKM	2
12	Handle	PVC	1
13	Union Nut	PVC / CPVC	2
14	Tag Holder	PVC	1

^{*} Spare parts available.

Components

No.	Component	Material	Qty
1	Easyfit multifunctional Tool	GFPP	1
2*	Easyfit multifunctional Handle	PVC	1
3*	Stem O-rings	EPDM / FKM	2
4	Stem	PVC / CPVC	1
5	Ball Seat	PTFE	2
6*	Ball	PVC / CPVC	1
7	Body	PVC / CPVC	1
8	Ball Seat O-Ring	EPDM / FKM	2
9*	Radial Seal O-Ring	EPDM / FKM	1
10*	Socket Seal O-Ring	EPDM / FKM	2
11	Support for ball seat	PVC / CPVC	1
12	End Connector	PVC / CPVC	2
13	Union Nut	PVC / CPVC	2
14	Transparent Service Plug	PVC	1
15	Central Hub	PVC	1
16	Friction reducing bush	PTFE	1
17	Tag Holder	PVC	1
18	Tamper-proof plate	PVC	1
19	Self-tapping screw	SS	2

^{*} Spare parts available.

Installation Procedures

- For socket and threaded style connections, remove the union nuts (part #13 on previous page) and slide them onto the pipe. For flanged connections, remove the union nut / flange assemblies from the valve.
- 2. Please refer to the appropriate connection style sub-section:
 - a. For socket style, solvent cement the end connectors (7 or 12) onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
 Be sure to allow sufficient cure time before continuing with the valve installation.
 - For threaded style, thread the end connectors (7) onto the pipe ends.
 For correct joining procedure, please refer to the section entitled,
 "Joining Methods Threading" in the IPEX Industrial Technical
 Manual Series, "Volume I: Vinyl Process Piping Systems".
- 3. Open and close the valve to ensure that the ball seat support (8) is at the desired adjustment. If adjustment is required, ensure that the valve is in the closed position then remove the handle (12 or 2) from the valve stem. Line up the moldings on the handle wit the slots in the ball seat support. Tighten or loosen to the desired position then replace the handle on the valve stem.
- 4. Ensure that the valve is in the closed position, and that the socket o-rings (10) are properly fitted in their grooves. Carefully place the valve in the system between the two end connections.
- 5. Tighten the union nut on the side opposite to that which is marked "ADJUST". Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. If additional tightening is required, the Easyfit multifunctional handle tool can be used to tighten the union nuts an additional 1/4 turn.
- 6. Tighten the union nut on the side marked "ADJUST". Tightening the union nuts in this order results in the best possible valve performance due to optimum positioning and sealing of the ball and seat support system.
 - Over-tightening may damage the threads on the valve body and/ or the union nut and may even cause the union nut to crack. It is recommended to use the Easyfit handle to prevent damage.
- Open and close the valve to again ensure that the cycling performance is adequate. If adjustment is required, place the valve in the closed position, loosen the union nuts, remove the valve from system and then continue from Step 3.

Valve Maintenance

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the system. Be sure to depressurize and drain the isolated branch and valve before continuing.
- Loosen both union nuts (13) and drop the valve out of the line. If retaining the socket o-rings (10), take care that they are not lost when removing the valve from the line.
 - a. For 1/2" to 2" remove the handle (12) and the transparent service plug (1a). Turn handle over, and seat on valve stem, ensuring the integrated gear teeth on the handle mesh with the union nut teeth. Turn clockwise to loosen.
 - b. For 2-1/2" to 6" remove handle (2). Remove the Easyfit multifunctional tool (1) from the bottom of the handle (2), turn it over and re-install it. Engage the tool (1) with the outer ring profile on the union nut (13) and loosen.
- To disassemble, place the valve in the closed position and locate the ball seat support adjustment tool on the multifunctional handle. This is found on the bottom of 1/2" to 2" handles and on the top of 2-1/2" to 6" handles.

- 4. Line up the moldings on the handle with the slots in the ball seat support (found on the side marked "ADJUST"). Loosen and remove the ball seat support (8 or 11) by turning in a counterclockwise direction.
- Carefully press the ball (5 or 6) out of the valve body, taking care not to score or damage the outer surface.
- 6. To remove the stem (3 or 4), remove the central hub (15) on 2-1/2" to 6" sizes, press the stem into the valve body (4 or 7) from above.
- 7. The stem o-rings (2 or 3), body o-ring (6 or 9), friction reducing bushing (16) and ball seats (9 or 5) can now be removed and/or replaced.

1/2" - 2" VXE Ball Valves

2-1/2" - 6" VXE Ball Valves

Valve Maintenance

Assembly

NOTE: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. **Be sure to consult the "IPEX Chemical Resistance Guide"** and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- 1. Firmly place the ball seat (9 or 5) in the groove on the opposite end inside the valve body (4 or 7).
- 2. Properly fit the stem o-rings (2 or 3) in the grooves on the stem (3 or 4) and the friction reducing bushing (16) onto the stem, then insert the stem from the inside of the valve body.
- Ensure that the valve stem is in the closed position then insert the ball (5 or 6) into the valve body taking care not to score or damage the outer surface.
- 4. Check that the ball seat (9 or 5) and body o-ring (6 or 9) are properly fitted on the ball seat support (8 or 11), then slightly hand tighten into the valve body. Line up the moldings on the handle (12 or 2) with the slots in the ball seat support then tighten by turning in a clockwise direction.
- Replace the handle on the valve stem then cycle the valve open and closed to determine whether or not the performance is adequate. If so desired, the handle can be removed and used to make further adjustments.
- Properly fit the socket o-rings (10) in their respective grooves.
- 7. Place the end connectors (7 or 12) into the union nuts (13), then thread onto the valve body taking care that the socket o-rings remain properly fitted in their grooves.
 - a. For 1/2" to 2" remove the handle (2) and the transparent service plug
 (1a). Turn handle over and seat over stem ensuring the integrated gear teeth mesh with the union nut teeth. Turn couter-clockwise to tighten.
 - b. For 2-1/2" to 6" remove handle (12). Remove the Easyfit multifunctional tool (1) from the bottom of the handle (12), turn it over and re-install it. Engage the tool (1) with the outer ring profile on the union nut (13) and tighten.
- 8. Replace the handle on the valve stem then cycle the valve open and closed to determine whether or not the performance is adequate.

Testing & Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

IMPORTANT POINTS:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

For safety reasons, please contact IPEX customer service and technical support when using volatile liquids such as hydrogen peroxide (H2O2) and sodium hypochlorite (NaClO). These liquids may vaporize causing a potentially dangerous pressure increase in the dead space between the ball and the valve body. Special VXE ball valves are available for these types of critical applications.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

IPEX VEE Series ball valves are ideal for light industrial and water applications. These valves feature an ultra-compact double block design, and full port bi-directional operation. The true union design allows the valve to be easily removed from the piping system and fully serviced. A threaded seat stop carrier provides improved seal integrity under tough service conditions while the removable handle also functions as a tool for ball seat adjustment. VEE Series ball valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

4517

ASTM D1784 ASTM D2466 ASTM D2467 ASTM D2464 ASTM F1498

VALVE AVAILABILITY

Body Material:	PVC
Size Range:	1/2" through 4"
Pressure:	232 psi
Seats:	HDPE / PTFE
Seals:	EPDM
End Connections:	Socket (IPS), Threaded (FNPT)

ANSI B1.20.1

Sample Specifications

1.0 Ball Valves - VEE

1.1 Material

 The valve body, stem, ball and unions shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.

1.2 Seats

 The ball seats shall be made of a Teflon® – HDPE blend.

1.3 Seals

The o-ring seals shall be made of EPDM.

2.0 Connections

2.1 Socket style

 The IPS socket PVC end connectors shall conform to the dimensional standards ASTM D2466 and ASTM D2467.

2.2 Threaded style

 The female NPT threaded PVC end connectors shall conform to the dimensional standards ASTM D2464, ASTM F1498, and ANSI B1.20.1.

3.0 Design Features

- The valve shall be double blocking with union ends.
- · All sizes shall be full port.
- · All sizes shall allow for bi-directional flow.
- The valve body shall be single end entry with a threaded carrier (ball seat support).
- The valve body shall have an expansion and contraction compensating groove on the molded end.
- The valve body, union nuts, and carrier shall have deep square style threads for increased strength.
- The ball shall be machined smooth to minimize wear on valve seats.
- The stem design shall feature a shear point above the o-ring to maintain system integrity in the unlikely event of a stem breakage.
- The handle shall incorporate a tool for adjustment of the threaded carrier.
- The handle shall incorporate a tool for adjustment of union nuts.
- The handle shall incorporate a opaque PVC plug that can be replaced with a plug and tag holder for valve identification.

3.1 Pressure Tested

 All valves shall have been pressure tested in both the open and closed positions by the manufacturer.

3.2 Pressure Rating

All sizes shall be rated at 232 psi at 73°F.

3.3 Markings

 All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.4 Color Coding

 All PVC valves shall be color-coded dark gray with a blue handle.

4.0 NSF Listings

- All valves shall be listed with NSF to Standard 61 for potable water.
- All valves shall be listed with NSF to Standard 372 for lead content requirements.
- **5.0** All valves shall be Xirtec® PVC by IPEX or approved equal.

Valve Selection

Size	Body	O-ring	IPEX Pa	rt Number	Pressure
(inches)	Material	Material	IPS Socket	FNPT Threaded	Rating
1/2	PVC	EPDM	353373	353374	
3/4	PVC	EPDM	353124	353215	
1	PVC	EPDM	353125	353217	
1-1/4	PVC	EPDM	353126	353219	
1-1/2	PVC	EPDM	353127	353220	232 psi
2	PVC	EPDM	353128	353221	
2-1/2	PVC	EPDM	353672	353735	
3	PVC	EPDM	353673	353736	
4	PVC	EPDM	353674	353737	

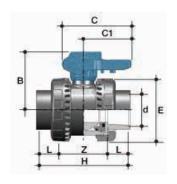
Size (inches):

 □
 1/2
 □
 1-1/4

 □
 3/4
 □
 1-1/2

 □
 1
 □
 2

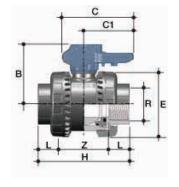
 □
 2-1/2
 □
 3


 □
 4

End Connections:

- □ Socket (IPS)
- Threaded (FNPT)

IPEX Part Number:

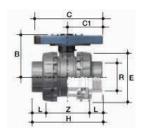

Dimensions

VEE IPS Socket (inches)

Size	d	L	Z	Н	Е	В	С	C1
1/2	0.84	0.89	2.01	3.78	2.13	1.93	2.52	0.79
3/4	1.05	1.00	2.13	4.13	2.48	2.44	3.07	0.91
1	1.32	1.13	2.34	4.61	2.83	2.80	3.43	1.06
1-1/4	1.66	1.26	2.83	5.35	3.35	3.23	4.02	1.18
1-1/2	1.90	1.38	3.03	5.79	3.94	3.62	4.29	1.30
2	2.38	1.50	3.84	6.85	4.65	4.33	5.24	1.54

VEE NPT Female (inches)

Size	R	L	Z	н	Е	В	С	C1
1/2	1/2-NPT	0.70	2.14	3.54	2.13	1.93	2.52	0.79
3/4	3/4-NPT	0.71	2.24	3.66	2.48	2.44	3.07	0.91
1	1-NPT	0.89	2.55	4.33	2.83	2.80	3.43	1.06
1-1/4	1-1/4-NPT	0.99	3.02	5.00	3.35	3.23	4.02	1.18
1-1/2	1-1/2-NPT	0.97	3.21	5.16	3.94	3.62	4.29	1.30
2	2-NPT	1.17	4.01	6.34	4.65	4.33	5.24	1.54

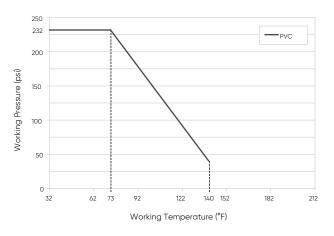

Dimensions

VEE IPS Socket (inches)

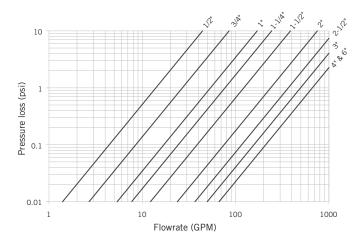
Size	d	L	Z	Н	E	В	С	C1
2-1/2	2.875	1.75	4.80	8.31	6.18	5.59	8.43	4.53
3	3.5	1.89	5.98	9.76	6.85	5.95	9.41	4.96
4	4.5	2.26	6.61	11.14	8.35	6.87	10.63	5.71
*6	6.625	3.03	18.56	24.62	8.35	6.87	10.63	5.71

^{* 6&}quot; VEE is a 4" with venturied ends

VEE NPT Female (inches)


Size	R	L	Z	Н	Е	В	С	C1
2-1/2	2-1/2-NPT	1.31	5.69	8.31	6.18	5.59	8.43	4.53
3	3-NPT	1.40	6.97	9.76	6.85	5.95	9.41	4.96
4	4-NPT	1.48	8.18	11.14	8.35	6.87	10.63	5.71

Weights


Approximate Weight (lbs)

Size	F	PVC
(inches)	IPS Socket	FNPT Threaded
1/2	0.39	0.39
3/4	0.57	0.57
1	0.81	0.81
1-1/4	1.25	1.25
1-1/2	1.76	1.76
2	2.93	2.93
2-1/2	6.06	6.06
3	7.57	7.57
4	12.82	12.82

Pressure – Temperature Ratings

Pressure Loss Chart

Flow Coefficients

Size	C _v
1/2	14.0
3/4	27.0
1	53.9
1-1/4	77.0
1-1/2	123
2	238
2-1/2	348
3	487.2
4	654.2

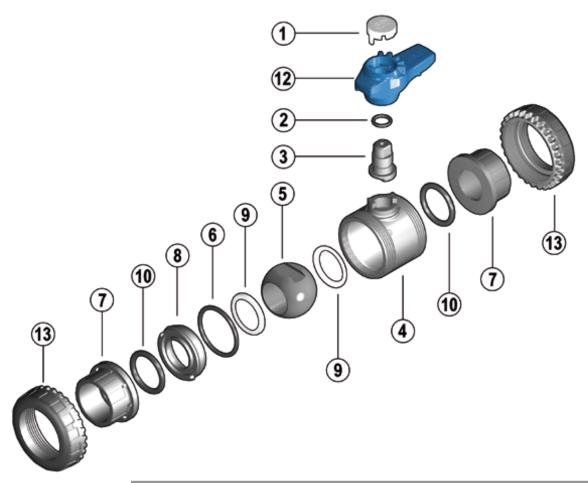
Customize VEE EasyFit

It is often necessary to customize a valve by labelling or tagging it in order to mark, protect and identify it.



VEE EasyFit valves can be equipped with a plastic water-resistant module designed to meet this specific need. The module is housed in the handle, is composed of a transparent PVC service plug and a white circle tag holder, IPEX branded on one side. The tag holder is embedded in the plug and can be easily removed to be used for self labelling on its blank side. Self labelling can be done in several ways, but we recommend designing and printing custom labels through the EasyFit Labelling System (LSE).

Please contact IPEX customer service for options and pricing on customization of VEE valves with LSE sets.



- A Transparent PVC Service Plug
- B EasyFit Multifunction Handle

Components

No.	Component	Material	Qty
1a	Opaque Service Plug	PVC	1
2*	Stem O-Ring	EPDM	1
3*	Stem	PVC	1
4	Body	PVC	1
5	Ball	PVC	1
6*	Body Seal O-Ring	EPDM	1
7	End Connector	PVCC	2
8	Support for Ball Seat	PVC	1
9*	Ball Seat	HDPE / PTFE	2
10*	Socket Seal O-Ring	EPDM	2
12	Handle	PVC	1
13	Union Nut	PVC	2

^{*} Spare parts available.

Installation Procedures

- For socket and threaded style connections, remove the union nuts (part #13 on previous page) and slide them onto the pipe. For flanged connections, remove the union nut / flange assemblies from the valve.
- 2. Please refer to the appropriate connection style sub-section:
 - a. For socket style, solvent cement the end connectors (7) onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
 Be sure to allow sufficient cure time before continuing with the valve installation.
 - For threaded style, thread the end connectors (7) onto the pipe ends.
 For correct joining procedure, please refer to the section entitled,
 "Joining Methods Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
- 3. Open and close the valve to ensure that the ball seat support (8) is at the desired adjustment. If adjustment is required, ensure that the valve is in the closed position then remove the handle (1) from the valve stem. Line up the moldings on the handle wit the slots in the ball seat support. Tighten or loosen to the desired position then replace the handle on the valve stem.
- 4. Ensure that the valve is in the closed position, and that the socket o-rings (10) are properly fitted in their grooves. Carefully place the valve in the system between the two end connections.
- 5. Tighten the union nut on the side opposite to that which is marked "ADJUST". Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Over-tightening may damage the threads on the valve body and/or the union nut and may even cause the union nut to crack. It is recommended to use the handle.
- 6. Tighten the union nut on the side marked "ADJUST". Tightening the union nuts in this order results in the best possible valve performance due to optimum positioning and sealing of the ball and seat support system.
- Open and close the valve to again ensure that the cycling performance is adequate. If adjustment is required, place the valve in the closed position, loosen the union nuts, remove the valve from system and then continue from Step 3.

Valve Maintenance

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the system. Be sure to depressurize and drain the isolated branch and valve before continuing.
- Loosen both union nuts (13) and drop the valve out of the line. If retaining the socket o-rings (10), take care that they are not lost when removing the valve from the line.
 - a. For 1/2" to 2" remove the handle (12) and the transparent service plug (1a). Turn handle over, and seat on valve stem, ensuring the integrated gear teeth on the handle mesh with the union nut teeth. Turn clockwise to loosen.
 - b. For 2-1/2" to 4" remove handle (2). Remove the Easyfit multifunctional tool (1) from the bottom of the handle (2), turn it over and re-install it. Engage the tool (1) with the outer ring profile on the union nut (13) and loosen.
- To disassemble, place the valve in the closed position and locate the ball seat support adjustment tool on the multifunctional handle. This is found on the bottom of 1/2" to 2" handles and on the top of 2-1/2" to 4" handles.

- 4. Line up the moldings on the handle with the slots in the ball seat support (found on the side marked "ADJUST"). Loosen and remove the ball seat support (8 or 11) by turning in a counterclockwise direction.
- Carefully press the ball (5 or 6) out of the valve body, taking care not to score or damage the outer surface.
- 6. To remove the stem (3 or 4), remove the central hub (15) on 2-1/2" to 4" sizes, press the stem into the valve body (4 or 7) from above.
- The stem o-rings (2 or 3), body o-ring (6 or 9), friction reducing bushing (16) and ball seats (9 or 5) can now be removed and/or replaced.

1/2" - 2" VEE Ball Valves

2-1/2" - 4" VEE Ball Valves

Valve Maintenance

Assembly

NOTE: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- 1. Firmly place the ball seat (9 or 5) in the groove on the opposite end inside the valve body (4 or 7).
- 2. Properly fit the stem o-rings (2 or 3) in the grooves on the stem (3 or 4) and the friction reducing bushing (16) onto the stem, then insert the stem from the inside of the valve body.
- Ensure that the valve stem is in the closed position then insert the ball (5 or 6) into the valve body taking care not to score or damage the outer surface.
- 4. Check that the ball seat (9 or 5) and body o-ring (6 or 9) are properly fitted on the ball seat support (8 or 11), then slightly hand tighten into the valve body. Line up the moldings on the handle (12 or 2) with the slots in the ball seat support then tighten by turning in a clockwise direction.
- Replace the handle on the valve stem then cycle the valve open and closed to determine whether or not the performance is adequate. If so desired, the handle can be removed and used to make further adjustments.
- 6. Properly fit the socket o-rings (10) in their respective grooves.
- 7. Place the end connectors (7 or 12) into the union nuts (13), then thread onto the valve body taking care that the socket o-rings remain properly fitted in their grooves.
 - a. For 1/2" to 2" remove the handle (2) and the transparent service plug
 (1a). Turn handle over and seat over stem ensuring the integrated gear teeth mesh with the union nut teeth. Turn couter-clockwise to tighten.
 - b. For 2-1/2" to 4" remove handle (12). Remove the Easyfit multifunctional tool (1) from the bottom of the handle (12), turn it over and re-install it. Engage the tool (1) with the outer ring profile on the union nut (13) and tighten.
- 8. Replace the handle on the valve stem then cycle the valve open and closed to determine whether or not the performance is adequate.

Testing & Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

MP SERIES COMPACT BALL VALVES

IPEX MP Compact Ball Valves are ideally suited to all kinds of plumbing and industrial applications where a compact, inexpensive on/off valve is required. The simple one piece PVC body with integral end connections eliminates potential problems cause by improper adjustment of the ball seating. MP Compact Ball Valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

VALVE AVAILABILITY

Body Material:	PVC
Size Range:	1/2" through 2"
Pressure:	150 psi
Seats:	Teflon® (PTFE)
Seals:	EPDM
End Connections:	Socket (IPS), Threaded (FNPT)

VALVES

MP SERIES COMPACT BALL VALVES

Sample Specifications

1.0 Ball Valves - MP

1.1 Material

 The valve body and ball shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.

1.2 Seats

The ball seats shall be made of Teflon® (PTFE).

1.3 Seals

The o-ring seals shall be made of EPDM.

2.0 Connections

2.1 Socket style

 The IPS socket PVC end connections shall conform to the dimensional standards ASTM D2466 and ASTM D2467.

2.2 Threaded style

 The female NPT threaded PVC end connections shall conform to the dimensional standards ASTM D2464, ASTM F1498, and ANSI B1.20.1.

3.0 Design Features

- The valve shall be composed of a one piece PVC body.
- The end connections shall be an integral part of the body.
- All sizes shall allow for bi-directional flow.

3.1 Pressure Rating

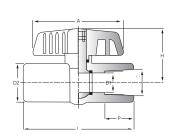
• All sizes shall be rated at 150 psi at 73°F (non-shock).

3.2 Markings

All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.3 Color Coding

- All PVC Schedule 40 valves shall be color-coded white.
- All PVC Schedule 80 valves shall be color-coded dark aray.
- **4.0** All valves shall be Xirtec® PVC by IPEX or approved equal.

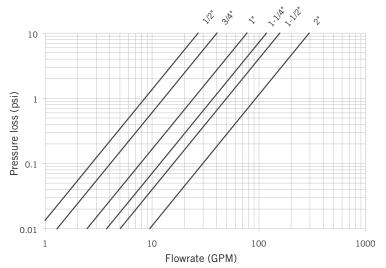

Valve Selection

Size	Body	O-ring	IPEX Par	t Number	Pressure	Body Material:				
(inches)	Material	Material	IPS Socket	FNPT Threaded	Rating	☐ Sch 40 white PVC				
1/2	Sch 40 PVC		052277	052283		☐ Sch 80 grey PVC				
1/ 2	Sch 80 PVC		052000	052026		Size (inches):				
3/4	Sch 40 PVC		052278	052284		□ 1/2 □ 1-1/4				
3/4	Sch 80 PVC		052006	052029		□ 3/4 □ 1-1/2				
1	Sch 40 PVC		052279	052285		□ 1 □ 2				
	Sch 80 PVC	EPDM	052007	052107	150 psi	End Connections:				
1 1//	Sch 40 PVC	EPDIM	052280	052286	150 psi	Socket (IPS)				
1-1/4	Sch 80 PVC		052009	052108		☐ Threaded (FNPT)				
1 1/2	Sch 40 PVC		052281	052287	•					
1-1/2	Sch 80 PVC		052019	052109		IPEX Part Number:				
	Sch 40 PVC		052282	052288						
2	Sch 80 PVC		052024	052144						

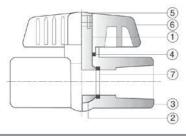
MP SERIES COMPACT BALL VALVES

Dimensions

Dimension (inches)


Size	D1	d Socket	d Threaded	Р	L	D2	н	А	W (lbs)
1/2	0.59	0.84	1/2 NPT	0.88	3.11	1.38	1.85	2.76	0.24
3/4	0.79	1.05	3/4 NPT	1.00	3.54	1.58	2.24	3.03	0.35
1	0.98	1.32	1 NPT	1.13	4.13	1.89	2.40	3.50	0.52
1-1/4	1.26	1.66	1-1/4 NPT	1.25	4.76	2.13	2.60	3.50	0.74
1-1/2	1.54	1.90	1-1/2 NPT	1.38	5.00	2.44	2.91	4.37	1.06
2	1.97	2.38	2 NPT	1.50	5.87	2.95	3.15	5.47	1.72

Pressure – Temperature Ratings

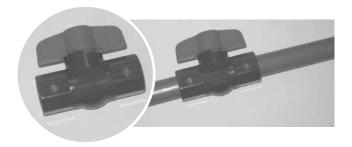

250 200 200 150 100 50 32 62 73 92 122 140 152 182 212

Working Temperature (°F)

Pressure Loss Chart

Components

#	Component	Material	Qty
1	stem	PVC	1
2	ball	PVC	1
3	body	PVC (white) / PVC (grey)	1
4	stem o-ring	EPDM	1
5	cap	ABS	1
6	handle	ABS	1
7	seat	PTFE	2


Flow Coefficients

Size	C_{v}
1/2	8.80
3/4	13.2
1	25.2
1-1/4	38.5
1-1/2	51.3
2	96.7

MP SERIES COMPACT BALL VALVES

Assembly

- Please refer to the appropriate connection style sub-section:
 - a. For socket style, solvent cement each pipe end into the body of the valve. For correct joining procedure, please refer to the section entitled, "Joining Methods Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Be sure to allow sufficient cure time before pressurizing the system.
 - For threaded style, thread each pipe end into the body of the valve. For correct joining procedure, please refer to the section entitled, "Joining Methods – Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the system. Be sure to depressurize and drain the isolated branch and valve before continuing.
- 2. Please refer to the appropriate connection style sub-section:
 - a. For socket style, cut the pipe as close to the ends of the valve body as possible. The valve can now be replaced.
 - b. For threaded style, unthread the pipe ends from the valve body. The valve can now be reused and/or replaced.

Note: The MP Compact Ball Valve is a molded-in-place valve. It cannot be disassembled.

Testing & Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-overwater boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.
- For safety reasons, please contact IPEX customer service and technical support when using volatile liquids such as hydrogen peroxide (H2O2) and sodium hypochlorite (NaClO). These liquids may vaporize causing a potentially dangerous pressure increase in the dead space between the ball and the valve body.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

IPEX TKD Series 3-Way Ball Valves can be used for flow diverting, mixing, or on/off isolation. They will replace a Tee + 2 valve linkage assembly at reduced cost and space, along with shorter installation and maintenance time. The patented seat stop carrier allows for in-line microadjustment of the ball seating, and features o-ring cushioning to minimize wear and prevent seizing. The TKD also includes our patented DUAL BLOCK® locking union nut system, which ensures the nuts are held in position even under severe service conditions such as high vibration or thermal expansion. Integral mounting flange and bracketing allows for direct actuation and simple support, while a locking handle can prevent improper positioning. TKD Series 3-Way Ball Valves are part of our complete Xirtec® PVC systems of pipe, valves and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

VALVE AVAILABILITY

Body Material:	PVC, CPVC
Size Range:	1/2" through 2"
Port Configuration:	Full port with T or L flow pattern
Pressure:	232psi
Seats:	Teflon® (PTFE)
Seals:	EPDM or FKM
End Connections:	Socket (IPS), Threaded (FNPT)

ASTM D1784 ASTM D2466 ASTM D2467 ASTM D2464 ASTM F437 ASTM F439 ASTM F1498

Sample Specifications

1.0 Ball Valves - TKD

1.1 Material

- The valve body, stem, ball, end connectors, and unions shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.
- The valve body, stem, ball and unions shall be made of Corzan® CPVC compound which shall meet or exceed the requirements of 23447 according to ASTM D1784.

1.2 Seats

The ball seats shall be made of Teflon® (PTFE).

1.3 Seals

- The o-ring seals shall be made of EPDM.
- or The o-ring seals shall be made of FKM.

2.0 Connections

2.1 Socket style

- The IPS socket PVC end connectors shall conform to the dimensional standards ASTM D2466 and ASTM D2467.
- or The IPS socket CPVC end connectors shall conform to the dimensional standard ASTM F439.

2.2 Threaded style

- The female NPT threaded PVC end connectors shall conform to the dimensional standards ASTM D2464, ASTM F1498 and ANSI B1.20.1.
- or The female NPT threaded CPVC end connectors shall conform to the dimensional standards ASTM F437, ASTM F1498, and ANSI B1.20.1.

3.0 Design Features

- All valves shall be true union at all three ports.
- All sizes shall be full port.
- Valve design shall permit positive shutoff of any of the three ports.
- Balls shall be of T-port or L-port design (specifier must select one).
- The valve shall have blocking seat supports at all three ports.
- The threaded carrier (ball seat support) shall be adjustable with the valve installed.
- The valve body, union nuts, and carrier shall have deep square style threads for increased strength.

- The ball shall be machined smooth to minimize wear on valve seats.
- All valve seats shall have o-ring backing cushions to compensate for wear and prevent seizure of the ball.
- The thickness of the valve body shall be the same at all three ports.
- The stem design shall feature a shear point above the o-ring to maintain system integrity in the unlikely event of a stem breakage.
- The valve shall include the DUAL BLOCK® union nut locking mechanism.
- The handle shall incorporate an optional feature to allow the valve position to be secured with a padlock.
- The handle shall incorporate a removable tool for adjustment of the threaded carrier.
- The top of the stem shall incorporate molded features to indicate port location and ball position.
- All valves shall have integrally molded mounting flanges for support and actuation.

3.1 Pressure Rating

All valves shall be rated at 232psi at 73°F (23°C).

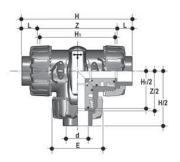
3.2 Markings

 All valves shall be marked to indicate size, material designation, and manufacturer's name or trade mark.

3.3 Color Coding

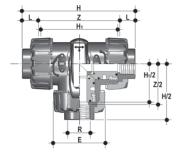
- All PVC valves shall be color-coded dark grey.
- or All CPVC valves shall be color-coded light grey.

4.0 NSF Listings

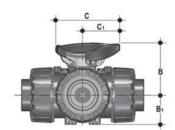

- All valves shall be listed with NSF to Standard 61 for potable water.
- All valves shall be listed with NSF to Standard 372 for lead content requirements.

5.0 All valves shall be Xirtec® PVC or Xirtec® CPVC by IPEX or approved equal.

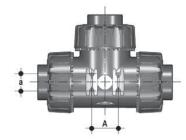
a.				IPEX P	art Number					
Size (inches)	Body Material	Port Style	O-ring Material	IPS Socket	FNPT Threaded	Pressure Rating @ 73°F	Material:			
			EPDM	2	53850		☐ PVC	☐ CPVC		
	PVC	Т	FKM	2	253862		☐ PVC	☐ CPVC		
	FVC	L	EPDM	2	253844					
1/2		L	FKM		253856		.			
1/ 2		Т	EPDM		253899		Port:			
	CPVC	·	FKM		253907		□ T	L		
		L	EPDM		253893		<u> </u>			
			FKM		53905					
		Т	EPDM		253851					
	PVC		FKM		253863		0: (:)			
		L	EPDM FKM		253845 253857		Size (inches):			
3/4			EPDM		53900		□ 1/2	1-1/4		
		Т	FKM		253908					
	CPVC		EPDM		253894		☐ 3/4	☐ 1-1/2		
		L	FKM		253922		1	□ 2		
		_	EPDM	2	253852					
	PVC	T	DVC	I	FKM	2	253864			
		L	EPDM	2	253846					
1		L	FKM	2	253858					
'		Т	EPDM	2	253901		Seals:			
	CPVC		FKM		253909		☐ EPDM			
	01.10	L	EPDM		253895					
			FKM		253906	232 psi	☐ FKM			
	T PVC L	Т	EPDM		253853					
		FKM EPDM		253865 253847						
		L	FKM		253859					
1-1/4			EPDM		253902		End Connection	ve.		
		Т	FKM		253910		Life Confidential	13.		
	CPVC		EPDM		253896		Socket (IPS)			
	L	L	FKM		253923		☐ Throuded/FN	IDT)		
			-	EPDM	2	253854		☐ Threaded (FN	NF 1)	
	PVC	Т	FKM	2	253866					
	FVC	L	EPDM	2	253848					
1-1/2		-	FKM		53860					
, _		Т	EPDM		253903		IPEX Part Num	har·		
	CPVC		FKM		253911		II EX I GIT NUIII	Der.		
		L	EPDM		253897					
			FKM EPDM		253924 253855					
		Т	FKM		253867					
	PVC		EPDM		253849					
		L	FKM		253861					
2		-	EPDM		53904					
	CDVC	Т	FKM		253912					
	CPVC	ı	EPDM		253898					
		L	FKM	2	253925					


Note: Flanged valves available upon request.

Dimensions


IPS Socket Connections - Dimension (inches)

Size (d)	Е	Н	H₁	L	Z
1/2	2.13	5.20	3.15	0.91	3.43
3/4	2.56	6.27	3.94	1.00	4.26
1	2.87	6.85	4.33	1.13	4.59
1-1/4	3.39	8.07	5.16	1.26	5.55
1-1/2	3.86	8.96	5.83	1.38	6.20
2	4.80	10.51	7.05	1.50	7.50

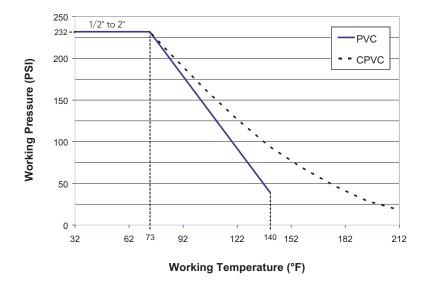

Female NPT Threaded Connections - Dimension (inches)

Size (R)	Е	Н	H₁	L	Z
1/2	2.13	4.96	3.15	0.71	3.56
3/4	2.56	5.76	3.94	0.71	4.35
1	2.87	6.56	4.33	0.89	4.78
1-1/4	3.39	7.71	5.16	0.99	5.73
1-1/2	3.86	8.32	5.83	0.97	6.38
2	4.80	9.99	7.05	1.17	7.66

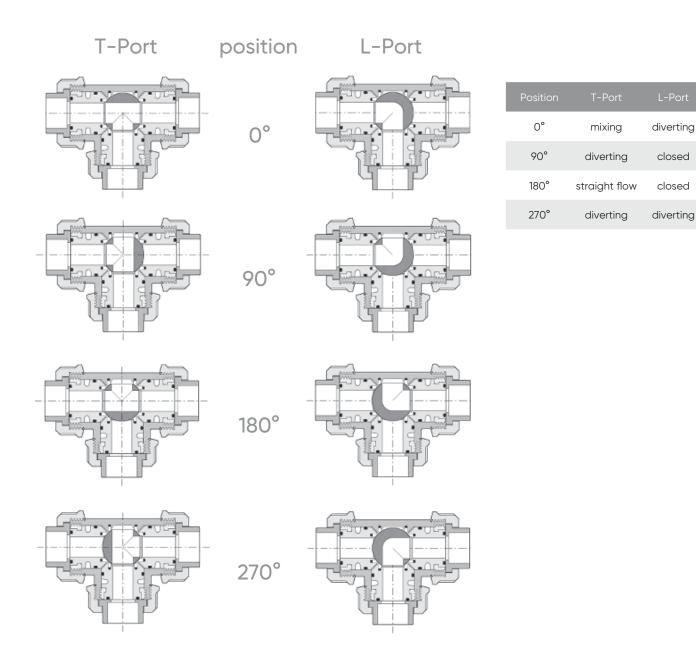
IPS Socket & Female NPT Threaded - Dimension (inches)

Size	В	B ₁	С	C1
1/2	2.13	1.14	2.64	1.58
3/4	2.56	1.36	3.35	1.93
1	2.74	1.54	3.35	1.93
1-1/4	3.25	1.81	4.25	2.52
1-1/2	3.50	2.05	4.25	2.52
2	4.25	2.44	5.28	2.99

Mounting Flanges - Dimension (inches)


Size	
1/2	1.22
3/4	1.22
1	1.22
1-1/4	1.97
1-1/2	1.97
2	1.97

Weights


Approximate Weight (lbs)

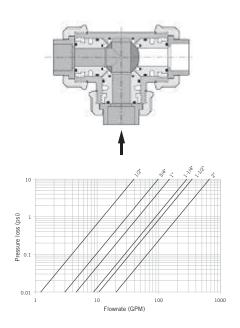
Size (inches)	IPS Socket	FNPT Threaded
1/2	0.68	0.68
3/4	1.21	1.21
1	1.74	1.74
1-1/4	2.81	2.81
1-1/2	3.66	3.66
2	6.17	6.17

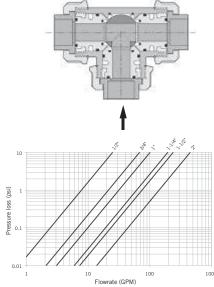
Pressure – Temperature Ratings

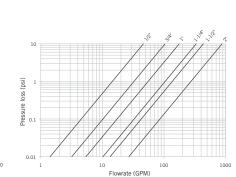
Operating Positions

Pressure Loss Chart

Position A:

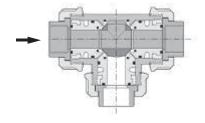

- T-Port
- · Center Inlet
- · Diverting Flow

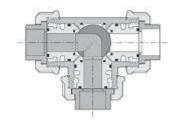

Position B:

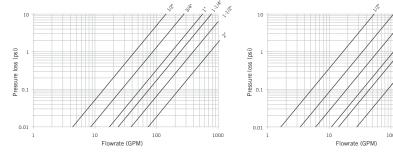

- T-Port
- Center Inlet
- Separating Flow

Position C:

- T-Port
- Side Inlet
- Diverting Flow

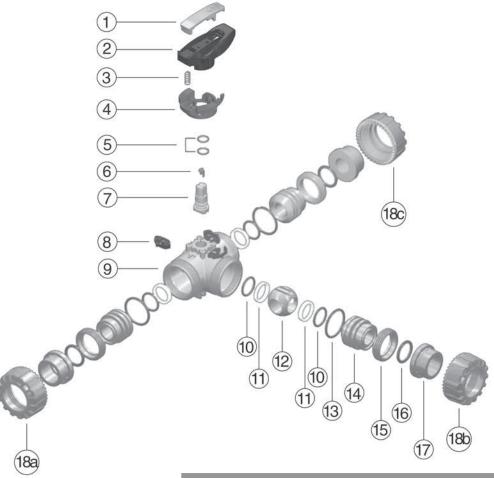



Position D:


- T-Port
- Side Inlet
- Straight Flow

Position E:

- L-Port
- Any Inlet
- Diverting Flow



Flow Coefficients

C_v Value

Size			Positior		
3126	А	В	С	D	Е
1/2	3.85	2.45	4.55	13.7	5.11
3/4	9.50	6.65	10.2	26.6	10.5
1	14.4	9.80	17.2	53.2	18.6
1-1/4	27.3	18.9	32.2	73.5	33.3
1-1/2	33.3	23.1	42.0	119	43.4
2	63.0	43.4	84.0	224	85.4

#	Component	Material	Qty
1	insert	PVC	1
2	handle	HI-PVC	1
3	spring (SHKD)	Stainless Steel	1
** 4	safety handle block (SHKD)	PP-GR	1
* 5	stem o-rings	EPDM / FKM	2
6	position indicator	POM	1
7	stem	PVC / CPVC	1
8	Dual Block®	POM	3
9	body	PVC / CPVC	1
* 10	support o-ring for ball seat	EPDM / FKM	4
* 11	ball seat	PTFE	4
12	ball	PVC / CPVC	1
13	radial seal o-ring	EPDM / FKM	3
14	support for ball seat	PVC / CPVC	3
15	stop ring	PVC / CPVC	3
* 16	socket seal o-ring	EPDM / FKM	3
* 17	end connector	PVC / CPVC	3
18abc	union nuts	PVC / CPVC	3

^{*} Spare parts available ** C

^{**} Optional feature

Installation Procedures

- For socket and threaded style connections, remove the union nuts (part #18
 on previous page) and slide them onto the pipe. For flanged connections,
 remove the union nut / flange assemblies from the valve.
- 2. Please refer to the appropriate connection style sub-section:
 - a. For socket style, solvent cement the end connectors (17) onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
 Be sure to allow sufficient cure time before continuing with the valve installation.
 - For threaded style, thread the end connectors (17) onto the pipe ends.
 For correct joining procedure, please refer to the section entitled,
 "Joining Methods Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
 - c. For flanged style, join the union nut / flange assemblies to the pipe flanges. For correct joining procedure, please refer to the section entitled, "Joining Methods – Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
- 3. Open and close the valve to ensure that the seat supports (14) are at the desired adjustment. If adjustment is required, remove the insert tool (1) from the handle (2). Line up the moldings on the tool with the slots in the seat supports. Tighten or loosen to the desired position then replace the tool on the handle. For correct alignment of the ball and seat support system, adjustment should begin with the center port.
- 4. Ensure that the socket o-rings (16) are properly fitted in their grooves then carefully place the valve in the system between the end connections. If anchoring is required, fix the valve to the supporting structure via the integral mounting flange on the bottom of the valve body (9).
- Tighten the three union nuts. Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Over-tightening may damage the threads on the valve body and/or the union nut, and may even cause the union nut to crack.
- 6. Check the installation of the dedicated lock nut device DUAL BLOCK® (8) on the valve body.
- Open and close the valve to ensure that the cycling performance is adequate. If adjustment is required, loosen the union nuts, remove the valve from the system, and then continue from Step 3.

Valve Maintenance

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the system. Be sure to depressurize and drain the isolated branch and valve before continuing.
- Unlock the Dual Block® system by compressing the lever (8). Loosen the three union nuts (18) and drop the valve out of the line. If retaining the socket o-rings (16), take care that they are not lost when removing the valve from the line.
- To disassemble, rotate the handle (2) to the following position:
 - a. For T-Port valves, the three arrows must line up with the three valve ports (The valve must be open at all three ports).
 - b. For L-Port valves, the two arrows must line up with ports "a" and "b" (see component diagram).
- 4. Remove the insert tool (1) from the handle then line up the moldings on the tool with the slots in the seat supports (14). Loosen and remove all three seat supports from the valve body (9).
- 5. Remove the ball (12) from the valve body while taking care not to score or damage the outer surface.
- Remove the handle from the stem (7) by pulling upwards. To remove the stem, push it into the valve body from above.
- 7. Remove the seats (11), backing o-rings (10), and body o-rings (13) from the seat supports.
- 8. Remove the seat and backing o-ring from the inside of the valve body.
- 9. Remove the stem o-rings (5).
- The valve components can now be checked for problems and/or replaced.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- Properly fit the stem o-rings (5) in the grooves on the stem (7), then insert the stem from the inside of the valve body (9).
- 2. Line up the markings on the stem with the ports in the valve body.
- 3. Replace the backing o-ring (10) and seat (11) at the back of the valve body.
- Insert the ball (12) into the valve body while ensuring that the ports line up with the markings on the stem.
- 5. Ensure that all body o-rings (13), backing o-rings, and seats are properly fitted on the three seat supports (14). Starting with the center port, tighten each support into the valve body using the insert tool (1).
- Replace the handle (2) on the stem while ensuring that the position markings on the handle line up with those on the stem. Replace the insert tool on the handle.
- Properly fit the socket o-rings (16) in their respective grooves.
- Place the end connectors (17) into the union nuts (18), then thread onto the valve body taking care that the socket o-rings remain properly fitted in their grooves.

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

The TKD offers an optional locking mechanism that prevents unintentional rotation. A padlock can be installed through the handle as an additional safety precaution.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

Designed to meet the requirements of the most severe industrial applications, IPEX VKR Series Regulating Ball Valves combine the reliability and safety features of IPEX VKD ball valves with a newly designed profiled ball. The patented ball design provides linear flow regulation throughout its full range of operation even when the valve is open just a few degrees. Like a traditional shut-off ball valve, the VKR has a 90° operating angle which allows the use of a standard quarter-turn actuator, ensuring perfect alignment and reducing the torque required for actuation. The patented Dual Block® mechanism locks the union nuts in place preventing back-off during severe service conditions.

VKR Regulating Ball Valves are part of our complete system of IPEX pipe, valves and fittings, engineered and manufactured to our strict quality, performance and dimensional standards.

VALVE AVAILABILITY

Body Material	PVC, PP, PVDF
Size Range	1/2" through 2"
Pressure	up to 232 psi
Seats	Teflon® (PTFE)
Seals	EPDM or Fluoropolymer (FKM)
End Connections	Socket (IPS),Threaded (FNPT) Socket (Metric), Flanged (ANSI 150)

ASTM D1784 ASTM D2464 ASTM D2466 ASTM D2467 ASTM D4101 ASTM D3222 ASTM F1498

ANSI B1.20.1

Sample Specifications

1.0 Ball Valves - VKR

1.1 Material

- The valve body, stem, ball and unions shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.
- or The valve body, stem, ball and unions shall be made of stabilized polypropylene (PP) homopolymer compound, also containing a RAL 7032 pigment, which shall meet or exceed the requirements of Type PP according to ASTM D4101.
- or The valve body, including end connectors and unions shall be made of virgin, non-regrind polyvinylidene fluoride (PVDF) compound which shall meet or exceed the requirements of Table 1 according to ASTM D3222.

1.2 Seats

The ball seats shall be made of Teflon® (PTFE).

1.3 Seals

- The o-ring seals shall be made of EPDM.
- or The o-ring seals shall be FKM.

2.0 Connections

2.1 Socket style

- The IPS socket PVC end connectors shall conform to the dimensional standards ASTM D2466 and ASTM D2467.
- or The Metric socket PP end connectors shall conform to the dimensional standard ISO 11922-1.
- or The Metric socket PVDF end connectors shall conform to the dimensional standard ISO 10931.

2.2 Threaded style

- The female NPT threaded PVC end connectors shall conform to the dimensional standards ASTM D2464, ASTM F1498, and ANSI B1.20.1.
- or The female NPT threaded PP end connectors shall conform to the dimensional standards ASTM F1498, and ANSI B1.20.1.

3.0 Design Features

- The valve shall be double blocking with union ends.
- All valves shall have a flow indication arrow on the side of the body.
- The valve body shall be single end entry with a threaded carrier (ball seat support).

- The threaded carrier shall be adjustable with the valve installed.
- The valve body shall have an expansion and contraction compensating groove on the molded end.
- The valve body, union nuts, and carrier shall have deep square style threads for increased strength.
- The ball design shall allow flow regulation starting at a 60 angle of opening.
- The ball and stem shall be machined smooth to minimize wear on valve seats and seals.
- The stem design shall feature double o-ring seals as well as a safety shear point above the o-rings.
- All valve seats shall have o-ring backing cushions to compensate for wear and prevent seizure of the ball.
- All valves shall have integrally molded mounting features for actuation.
- All valves shall have integrally molded support bracketing for anchoring.

3.1 Pressure Tested

 All valves shall have been pressure tested in both the open and closed positions by the manufacturer.

3.2 Pressure Rating

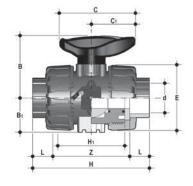
- All PVC and PVDF valves shall be rated at 232 PSI at 73°F.
- All PP valves shall be rated at 150 PSI at 73°F.
- All flanged valves shall be rated at 150 PSI at 73°F.

3.3 Markings

 All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

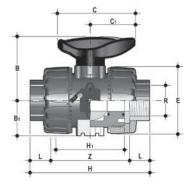
3.4 Color Coding

- All PVC valves shall be color-coded dark gray.
- or All PP valves shall be color-coded beige gray.
- or All PVDF valves shall not be color-coded and be white (unpigmented) in appearance.


4.0 NSF Listings

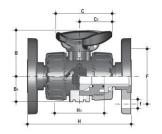
- All PVC valves shall be listed with NSF to standard 61 for potable water.
- All PVC valves shall be listed with NSF to Standard 372 for lead content requirements.
- **5.0** All valves shall be Xirtec® PVC, PP or PVDF by IPEX or approved equal.

Valve Selection


Value Cine	Deale	O :::::	IPEX Part Number	D	Body Material:
Valve Size (inches)	Body Material	O-ring Material	IPS Socket	Pressure Rating at 73°F	□ PVC □ PP
1/2	PVC	EPDM	353684		☐ PVDF
1/ 2	PVC	FKM	353675		_
3/4	PVC	EPDM	353683		Size:
3/4	PVC	FKM	353676		□ 1/2" □ 1-1/4"
1	PVC	EPDM	353682		□ 3/4" □ 1-1/2"
	PVC	FKM	353678	232 psi	□ 1″ □ 2″
1 1//	D)/C	EPDM	353681	232 psi	
1-1/4	PVC	FKM	353685		Seals:
1-1/2	PVC	EPDM	353680		☐ EPDM ☐ FKM
1-1/2	PVC	FKM	353686		
2	PVC	EPDM	353679		IPEX Part Number:
Ζ.	PVC	FKM	353677		

Dimensions

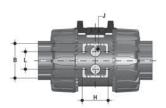
IPS Socket Connections - Dimension (inches)


Size	d	Н			Нı		B1	В	C1	С
1/2	0.84	4.61	0.89	2.83	2.56	2.13	1.14	2.13	1.57	2.64
3/4	1.05	5.08	1.00	3.07	2.76	2.56	1.36	2.56	1.93	3.35
1	1.32	5.59	1.13	3.33	3.07	2.87	1.54	2.74	1.93	3.35
1-1/4	1.66	6.38	1.26	3.86	3.46	3.39	1.81	3.25	2.52	4.25
1-1/2	1.90	6.77	1.38	4.02	3.66	3.86	2.05	3.50	2.52	4.25
2	2.38	7.83	1.50	4.83	4.37	4.80	2.44	4.25	2.99	5.28

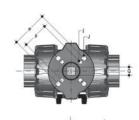
Female NPT Threaded Connections - Dimension (inches)


Size	R	Н			Ηı		В1	В	C1	С
1/2	1/2-NPT	4.37	0.70	2.97	2.56	2.13	1.14	2.13	1.57	2.64
3/4	3/4-NPT	4.61	0.71	3.19	2.76	2.56	1.36	2.56	1.93	3.35
1	1-NPT	5.31	0.89	3.54	3.07	2.87	1.54	2.74	1.93	3.35
1-1/4	1-1/4-NPT	6.02	0.99	4.05	3.46	3.39	1.81	3.25	2.52	4.25
1-1/2	1-1/2-NPT	6.14	0.97	4.20	3.66	3.86	2.05	3.50	2.52	4.25
2	2-NPT	7.32	1.17	4.99	4.37	4.80	2.44	4.25	2.99	5.28

VKD Flanged Connections – Dimension (inches)


Size	Н	H₁	В	B ₁	С	C ₁	F	f	U
1/2"	5.63	2.56	2.13	1.14	2.64	1.58	2.37	0.63	0.16
3/4"	6.77	2.76	2.56	1.36	3.35	1.93	2.75	0.63	0.16
1"	7.36	3.07	2.74	1.54	3.35	1.93	3.13	0.63	0.16
1-1/4"	7.48	3.47	3.25	1.81	4.25	2.52	3.5	0.63	0.16
1-1/2"	8.35	3.66	3.5	2.05	4.25	2.52	3.87	0.63	0.16
2"	9.21	4.37	4.25	2.44	5.28	2.99	4.75	0.75	0.16

Note: Dimensions based on VKD ANSI 150 Flanging Kit


Metric Socket Connections - Dimension (inches)

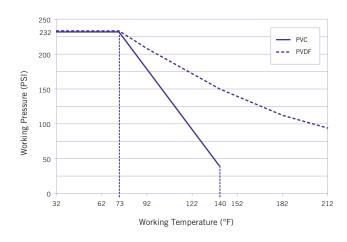
Size	d	Н	L	Z	Нı	Е	В1	В	C ₁	С
20mm	0.79	4.02	0.57	2.87	2.56	2.13	1.14	2.13	1.57	2.64
25mm	0.98	4.49	0.63	3.23	2.76	2.56	1.36	2.56	1.93	3.35
32mm	1.26	4.96	0.71	3.54	3.07	2.87	1.54	2.74	1.93	3.35
40mm	1.57	5.55	0.81	3.94	3.35	3.39	1.81	3.25	2.52	4.25
50mm	1.97	6.46	0.93	4.61	3.66	3.86	2.05	3.50	2.52	4.25
63mm	2.48	7.83	1.08	5.67	4.37	4.80	2.44	4.25	2.99	5.28

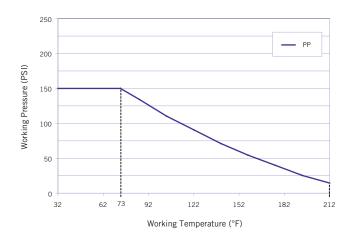
Support Bracket - Dimension (inches)

Size	J	В	L	Н
1/2	M4	1.24	0.79	1.06
3/4	M4	1.57	0.79	1.18
1	M4	1.57	0.79	1.18
1-1/4	M6	1.97	1.18	1.38
1-1/2	M6	1.97	1.18	1.38
2	M6	2.36	1.18	1.57

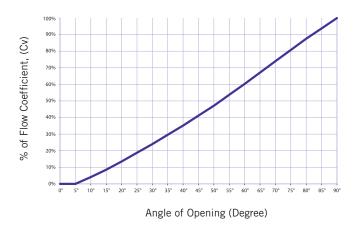
Size	B_2	р	Р				Q
1/2	2.28	F03	F04	0.22	0.22	0.47	0.43
3/4	2.89	F03	F05	0.22	0.26	0.47	0.43
* 3/4	2.89	FC)4	0	22	0.47	0.43
1	2.91	F03	F05	0.22	0.26	0.47	0.43
* 1	2.91	FC)4	0	22	0.43	0.43
1-1/4	3.82	F05	F07	0.26	0.33	0.63	0.55
1-1/2	4.09	F05	F07	0.26	0.33	0.63	0.55
2	4.49	F05	F07	0.26	0.33	0.63	0.55

^{*}Available upon request.

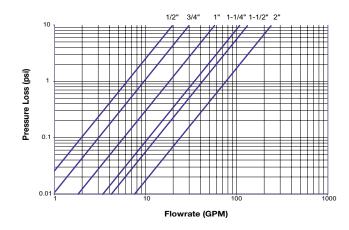



Weights

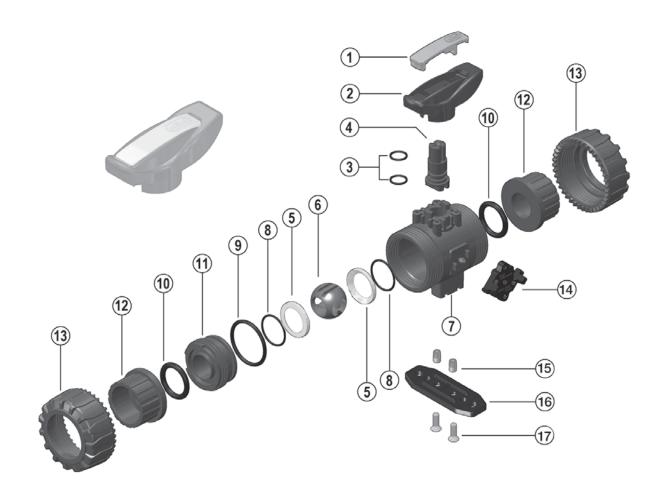
Approximate Weight (lbs)


	Approximate Weight (lbs)								
Size (i	Size (inches)		IPS / Metric Soc	FNPT Threaded					
IPS	Metric	PVC	PP	PVDF	PVC	PP			
1/2	20mm	0.47	0.32	0.60	0.46	0.31			
3/4	25mm	0.76	0.48	0.98	0.74	0.50			
1	32mm	0.99	0.66	1.29	0.99	0.67			
1-1/4	40mm	1.58	1.06	2.07	1.49	1.01			
1-1/2	50mm	2.15	1.50	2.74	2.11	1.43			
2	63mm	3.77	2.57	4.82	3.68	2.50			

Pressure - Temperature Ratings



Flow Performance Curve


Pressure Loss Chart

Flow Coefficients

Size (in)	C _v
1/2	6.1
3/4	9.4
1	17.8
1-1/4	33.2
1-1/2	41.1
2	74.1

Components

#	Component	Material	Qty
1	insert	PVC / PP / PVDF	1
2	handle	PVC / PP / PVDF	1
3	stem o-ring	EPDM / FKM	2
4	stem	PVC / PP / PVDF	1
5	ball seat	PTFE	2
6	profiled ball	PVC / PP / PVDF	1
7	body	PVC / PP / PVDF	1
8	ball seat o-ring	EPDM / FKM	2
9	body o-ring	EPDM / FKM	1
10	socket o-ring	EPDM / FKM	2

#	Component	Material	Qty
11	carrier with stop ring	PVC / PP / PVDF	1
12	end connector	PVC / PP / PVDF	2
13	union nut	PVC / PP / PVDF	2
14	DUAL BLOCK®	POM	1
* 15	bracket bushing	SS / brass	2
* 16	mounting plate	GRPP	1
* 17	screw	SS	2

^{*} Optional Accessories

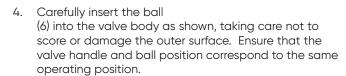
Installation Procedures

- 1. Remove the union nuts (part #13 on previous pages) and slide them onto the pipe.
- 2. Please refer to the appropriate connection style sub-section:
 - a. For socket style, solvent cement or fuse the end connectors (12) onto the pipe ends. For correct solvent cementing procedure, please refer to the section entitled, "Joining Methods – Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Be sure to allow sufficient cure time before continuing with the valve installation.
 - For threaded style, thread the end connectors (12) onto the pipe ends.
 For correct joining procedure, please refer to the section entitled,
 "Joining Methods Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
- Open and close the valve to ensure that the carrier (11) is at the desired adjustment. If adjustment is required, ensure that the valve is in the closed position then remove the insert tool (1) from the handle (2).
- 4. Ensure that the valve is in the closed position, and that the socket o-rings (10) are properly fitted in their grooves. If anchoring is required, insert the bracket bushings (15) into the bottom of the valve. Carefully place the valve in the system between the two end connections and fix if necessary.
- 5. Tighten the union nut on the side opposite to that which is marked "ADJUST". Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Over-tightening may damage the threads on the valve body and/or the union nut, and may even cause the union nut to crack.
- 6. Tighten the union nut on the side marked "ADJUST". Tightening the union nuts in this order results in the best possible valve performance due to optimum positioning and sealing of the ball and seat support system.
- 7. Open and close the valve to again ensure that the cycling performance is adequate. If adjustment is required, place the valve in the closed position, loosen the union nuts, remove the valve from the system, and then continue from Step 3.
- 8. Engage the Dual Block® system by affixing the molded piece (14) to the side of the valve body. This feature will prevent back-off of the union nuts during operation.

VKR SERIES REGULATING BALL VALVES

Disassembly

 If removing the valve from an operating system, isolate the valve from the rest of the line. Be sure to depressurize and drain the valve and isolated branch.


- 2. If necessary, detach the valve from the support structure by disassembling the connections to the optional bracket on the bottom of the valve body (7).
- 3. Unlock the Dual Block® system by compressing the two ends of the molded piece (14) to the unlocked position. Loosen both union nuts (13) and drop the valve out of the line. If retaining the socket o-rings (10), take care that they are not lost when removing the valve from the line.
- Place the valve in the open position then line up the moldings on the wrench tool (1) with the slots in the carrier (found on the side marked "ADJUST"). Loosen and remove the carrier (11).
- Carefully press the ball (6) out of the valve body, taking care not to score or damage the outer surface.
- 6. Remove the handle (2) by pulling upwards.
- 7. Press the stem (4) into the valve body from above.
- The stem o-rings (3), body o-ring (9), ball seats (5), and ball seat o-rings (8) can now be removed and/or replaced.

Note: It is not typically necessary to disassemble the Dual Block® components.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- I. Replace the stem
 o-rings (3), body o-ring
 (9), ball seat o-rings
 (8), and ball seats (5) in
 their proper positions.
- 2. Insert the stem (4) into position from inside the valve body (7).
- 3. Replace the handle (2) as shown.

- 5. Insert the threaded carrier (11) and tighten into the valve body. Use the wrench tool to sufficiently tighten.
- Place the end connectors (12) into the union nuts (13), then thread onto the valve body taking care that the socket o-rings remain properly fitted in their grooves.
- Engage the Dual Block® system by affixing the molded piece (16) to the side of the valve body.

VKR SERIES REGULATING BALL VALVES

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

For safety reasons, please contact IPEX customer service and technical support when using volatile liquids such as hydrogen peroxide (H_2O_2) and sodium hypochlorite (NaClO). These liquids may vaporize causing a potentially dangerous pressure increase in the dead space between the ball and the valve body. Special VKR ball valves are available for these types of critical applications.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

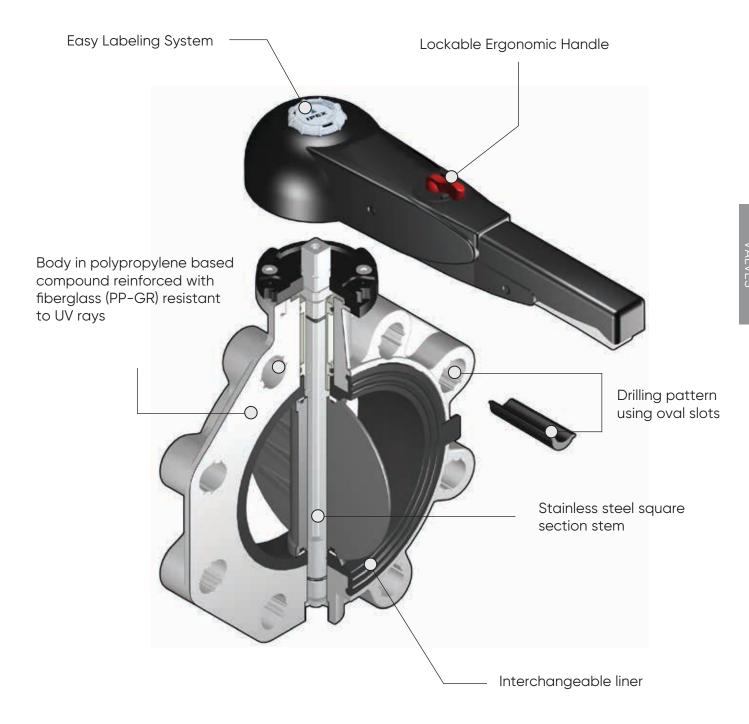
SECTION THREE: BUTTERFLY VALVES

FK SERIES BUTTERFLY VALVES

IPEX FK Series Butterfly Valves offer superior strength and chemical resistance in highly corrosive environments and process flow conditions. The special trapezoid shape of the liner and a serrated body cavity guarantee a bubble tight seal while keeping break-away torque at an absolute minimum. This versatile industrial valve features double self-lubricating seals, direct actuator mount capability, and the option of either a lever handle or mounted gear box. The FK lever handle includes the EasyFit labeling system for valve identification. A special integral stainless steel lug version provides for full bi-directional operation allowing disassembly of the downstream flange connection without weakening the integrity of the upstream connection to the pressurized line. FK Series Butterfly Valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

VALVE AVAILABILITY

Body Material	Glass reinforced PP (GRPP)
Disc Material	CPVC, also offered in PP, PVC, ABS, and PVDF
Size Range	1-1/2" through 16"
Pressure	See Sample Specifications
Seals	EPDM or FKM
Body Style	Wafer or Lugged
Control Style	Lever Handle or Mounted Gear Box
End Connections	Flanged (ANSI 150)


ASTM D4101 ASTM D1784 ASTM D3222

ANSI B16.5

Components

Sample Specifications

1.0 Butterfly Valves - FK

1.1 Material

- The valve body shall be made of glass reinforced polypropylene (GRPP) obtained from homopolymer polypropylene (PPH).
- The valve disc shall be made of Corzan® CPVC compound which shall meet or exceed the requirements of 23447 according to ASTM D1784.
- or The valve disc shall be made of stabilized PP homopolymer compound, also containing a RAL 7032 pigment, which shall meet or exceed the requirements of Type I Polypropylene according to ASTM D4101.
- or The valve disc shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.
- or The valve disc shall be made of virgin, non-regrind PVDF compound which shall meet or exceed the requirements of Table 1 according to ASTM D3222.
- These compounds shall be listed with NSF to Standard 61 for potable water.
- The valve shaft shall be made of 316 stainless steel.

1.2 Seats

- · The disc liner shall be made of EPDM.
- or The disc liner shall be made of FKM.

1.3 Seals

- · The o-ring seals shall be made of EPDM.
- or The o-ring seals shall be made of FKM.

2.0 Connections

2.1 Flanged style

 The ANSI 150 flanged connections shall conform to the dimensional standard ANSI B16.5.

3.0 Design Features

- The valve shall be of either wafer or lugged design (specifier must select one).
- The lugged style shall feature permanently integrated stainless steel lugs.
- Manual control of the valve shall be achieved through the use of either a lever handle or mounted gear box (specifier must select one).
- The shaft shall have standard ISO square dimensions for direct mounting of actuators.
- The disc seat shall be a trapezoidal elastomeric liner and provide a bubble tight seal.
- The liner shall completely isolate the valve body from the process flow.
- The liner shall function as a flange gasket on both sides of the valve.
- The body cavity shall feature special channeling to prevent liner slippage and compression.
- The disc, seats, and seals shall be the only wetted parts.
- Teflon® seated o-ring seals shall prevent the stainless steel shaft from becoming wetted.
- The handle shall incorporate a transparent PVC plug and tag holder for valve identification.

3.1 Pressure Rating

CPVC Disc, Wafer Style

- 1-1/2" and 2" shall be rated at 232 psi at 73°F
- 2-1/2" to 10" shall be rated at 150 psi at 73°F
- 12" shall be rated at 120 psi at 73°F

PP Disc, Wafer Style

- 1-1/2" to 10" shall be rated at 150 psi at 73°F
- 12" shall be rated at 120 psi at 73°F
- 14" shall be rated at 100 psi at 73°F
- 16" shall be rated at 85 psi at 73°F

PVC Disc, Wafer Style

- 14" shall be rated at 100 psi at 73°F
- 16" shall be rated at 85 psi at 73°F

PVDF Disc, Wafer Style

- 1-1/2" and 2" shall be rated at 232 psi at 73°F
- 2-1/2" to 10" shall be rated at 150 psi at 73°F
- 12" shall be rated at 120 psi at 73°F

CPVC Disc, Lugged Style

- 2-1/2" to 8" shall be rated at 150 psi at 73°F
- 12" shall be rated at 85 psi at 73°F

PP Disc, Lugged Style

- 2-1/2" to 8" shall be rated at 150 psi at 73°F
- 10" and 12" shall be rated at 85 psi at 73°F

PVDF Disc, Lugged Style

- \cdot 2-1/2" to 8" shall be rated at 150 psi at 73°F
- 12" shall be rated at 85 psi at 73°F

3.2 Markings

 All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.3 Color Coding

- All valve bodies shall be color-coded beige gray.
- CPVC valve discs shall be color-coded light gray
- PP valve discs shall be color-coded beige gray
- PVC valve discs shall be color-coded dark gray
- PVDF valve discs shall not be color-coded and be white in appearnce
- 4.0 All valves shall be listed to NSF Standard 61 for potable water.
- 5.0 All valves shall be by IPEX or approved equal.

Valve Selection

Significant Body Rating @ 73°F FKOM107C 353112 1-1/2" 232 FKOM108C 353113 2" 2-1/2" FKOM109C 353114 3" FKOM110C 353115 Lever GRPP Wafer **EPDM CPVC** Handle FKOM111C 353116 150 FKOM112C 353117 5" FKOM113C 353118 6" FKOM114C 353119 8" FKOM207C 353137 1-1/2" 232 FKOM208C 2" 353213 FKOM209C 353214 2-1/2" FKOM210C 3" 353216 Lever GRPP **CPVC** Wafer FKM 4" FKOM211C 353218 Handle 150 FKOM212C 353224 5" FKOM213C 353225 6" FKOM214C 353226 8" FKOM109GC 254100 2-1/2" FKOM110GC 254134 3" FKOM111GC 254135 4" FKOM112GC 254136 5" 150 **CPVC** 6" FKOM113GC 254137 GRPP **EPDM** Wafer Gearbox FKOM114GC 254138 8" FKOM115GC 254128 10" FKOM116GC 254139 12" 120 FKOM117GV 253194 14" 100 PVC FKOM118GV 253195 16" 85 FKOM209GC 254144 2-1/2" FKOM210GC 254155 3" FKOM211GC 254156 4" 150 FKOM212GC 254157 5" **CPVC** FKOM213GC 254158 6" GRPP Wafer FKM Gearbox FKOM214GC 254159 8" FKOM215GC 254160 10" FKOM216GC 254161 12" 120 FKOM217GV 253196 14" 100 PVC FKOM218GV 253197

Significant Number

Code	FK	0	М	1	07	G	С
Position	1	2	3	4	5	6	7

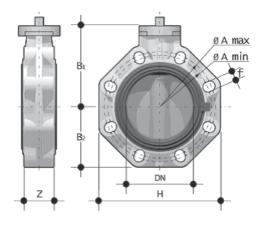
Position	Code	Description
	_	
1		Model
1	FK	Butterfly Valve
		Connection
2	0	ANSI 150 Flange – Wafer
_		ANSI 150 Flange –

3		Body Material
	М	PP

316 SS LUG

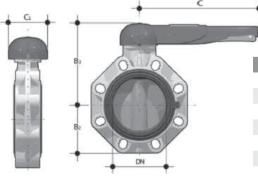
		Liner Material
4	1	EPDM
	2	FKM

	Size	Imperial	DN
	07	1-1/2"	40 mm
	08	2"	50 mm
	09	2-1/2"	65 mm
	10	3"	80 mm
	11	Ц"	100 mm
5	12	5"	125 mm
	13	6"	150 mm
	14	8"	200 mm
	15	10"	250 mm
	16	12"	300 mm
	17	14"	350 mm
	18	16"	400 mm

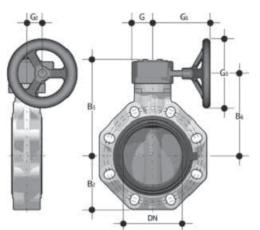

	Control Style				
6		Lever Handle			
	G	Gearbox			

		Disc Material
	С	CPVC
7	F	PVDF
		PP
	V	PVC

Dimensions

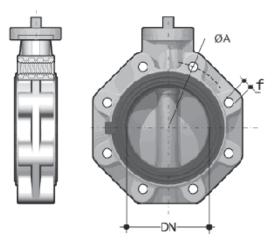

Significant Number	IPEX Part Number	Body Material	Body Style	Liner Material	Size	Disc Material	Control Style	Pressure Rating @ 73°F
FKLM109C	353120				2-1/2"			
FKLM110C	353121				3"			
FKLM111C	353122	GRPP	ANSI 316	EPDM	4"	CPVC	Lever	150
FKLM112C	353123	GRPP	SS LUG	EPDIVI	5"	CPVC	Handle	150
FKLM113C	353129				6"			
FKLM114C	353130				8"			
FKLM209C	353159				2-1/2"			
FKLM210C	353167				3"			
FKLM211C	353168	GRPP	ANSI 316	FKM	4"	CPVC	Lever	150
FKLM212C	353169	GRPP	SS LUG	FRIVI	5"	CPVC	Handle	130
FKLM213C	353170				6"			
FKLM214C	353171				8"			
FKLM109GC	254171				2-1/2"	CPVC	Gearbox	
FKLM110GC	254172				3"			
FKLM111GC	254173				4"			150
FKLM112GC	254174	0000	ANSI 316		5"			150
FKLM113GC	254175	GRPP	SS LUG	EPDM	6"			
FKLM114GC	254176				8"			
FKLM115GC	254142				10"			
FKLM116GC	254143				12"			85
FKLM209GC	254165				2-1/2"			
FKLM210GC	254166				3"			
FKLM211GC	254167				4"			150
FKLM212GC	254168	GRPP	ANSI 316	FKM	5"	CPVC	Gearbox	150
FKLM213GC	254169	GRPP	SS LUG	FNI*I	6"	CFVC	Gealbax	
FKLM214GC	254170				8"			
FKLM215GC	254119				10"			85
FKLM216GC	254164				12"			00

Pressure – Temperature Ratings

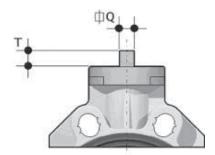

Free Stem - Dimension (inches)

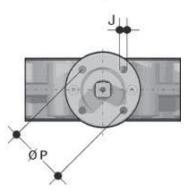
Size	DN	Z	B ₁	B ₂	Н	Amin	Amax	f	# holes
1-1/2	40	1.30	4.17	2.36	5.20	3.90	4.29	0.75	4
2	50	1.69	4.41	2.76	5.79	4.53	4.94	0.75	4
2-1/2	65	1.81	4.69	3.15	6.50	5.04	5.67	0.75	4
3	80	1.93	5.24	3.66	7.28	5.71	6.30	0.75	12*
4	100	2.20	5.79	4.21	8.31	6.50	7.48	0.75	8
5	125	2.52	6.57	4.72	9.45	8.03	8.46	0.91	8
6	150	2.76	7.09	5.28	10.55	9.06	9.53	0.91	8
8	200	2.80	8.94	6.34	12.72	11.02	11.73	0.91	8
10	250	4.49	9.76	8.27	15.94	13.19	14.25	1.00	12
12	300	4.49	12.01	9.65	18.70	15.35	17.01	1.14	12
14	350	5.08	12.99	11.02	20.87	18.74	18.74	1.12	12
16	400	6.65	13.78	12.05	23.39	21.26	21.26	1.12	16

Lever Handle – Dimension (inches)


Size	DN	C1	С	B ₂	B ₃	# holes
1-1/2	40	3.94	6.89	2.36	5.39	4
2	50	3.94	6.89	2.76	5.63	4
2-1/2	65	4.33	10.71	3.15	6.46	4
3	80	4.33	10.71	3.66	7.01	12*
4	100	4.33	10.71	4.21	7.56	8
5	125	4.33	12.99	4.72	8.35	8
6	150	4.33	12.99	5.28	8.86	8
8	200	4.80	16.54	6.34	10.71	8

Gearbox Operated Butterfly Valve – Dimension (inches)

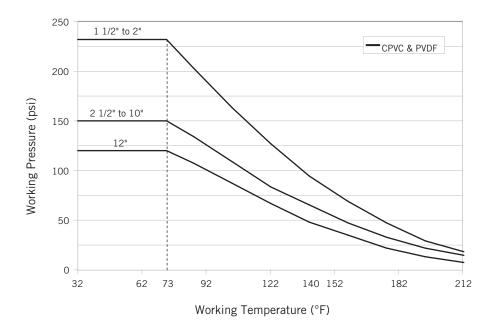

Size	DN	G2	G	G ₁	G ₃	B ₂	B ₅	B ₆	# holes
2-1/2	65	1.54	1.89	5.31	4.92	3.15	6.85	5.75	4
3	80	1.54	1.89	5.31	4.92	3.66	7.40	6.30	8
4	100	1.54	1.89	5.31	4.92	4.21	7.95	6.85	8
5	125	1.54	1.89	5.67	7.87	4.72	8.74	7.64	8
6	150	1.54	1.89	5.67	7.87	5.28	9.25	8.15	8
8	200	2.36	2.56	8.03	7.87	6.34	11.30	10.08	8
10	250	2.99	3.46	9.29	9.84	8.27	12.48	11.06	12
12	300	2.99	3.46	9.29	9.84	9.65	14.72	13.31	12
14	350	3.15	3.46	14.21	11.81	11.02	17.24	15.35	12
16	400	3.15	3.46	14.21	11.81	12.05	17.24	15.35	16


Customize FK EasyFit

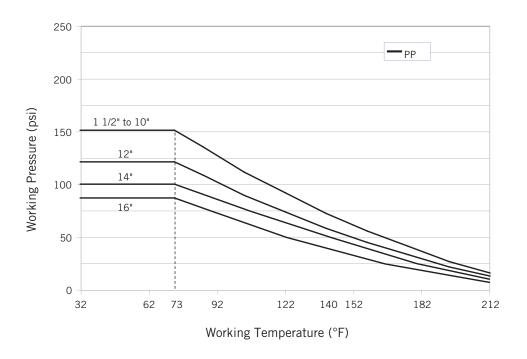
ANSI Lugged - Dimension (inches)

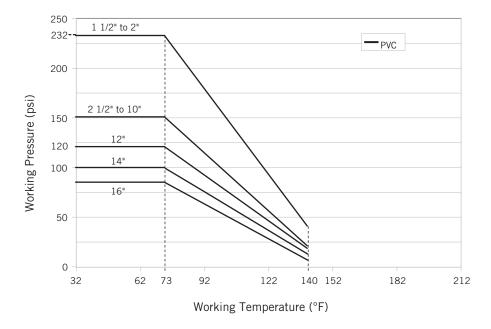
Size (in.)	DN	А	f	# holes
2-1/2	65	5.50	5/8 - UNC	4
3	80	6.00	5/8 - UNC	8
4	100	7.50	5/8 - UNC	8
5	125	8.50	3/4 - UNC	8
6	150	9.50	3/4 - UNC	8
8	200	11.75	3/4 - UNC	8
10	250	14.25	7/8 - UNC	12
12	300	17.00	7/8 - UNC	12

Mounting Pad for Actuation – Dimension (inches)


Size (in.)	ISO	J	P	Т	Q
1-1/2	F05	0.28	1.97	0.47	0.43
2	F05	0.28	1.97	0.47	0.43
2-1/2	F05 / F07	0.28 / 0.35	1.97 / 2.76	0.47	0.43
3	F07	0.35	2.76	0.63	0.55
4	F07	0.35	2.76	0.63	0.55
5	F07	0.35	2.76	0.75	0.67
6	F07	0.35	2.76	0.75	0.67
8	F10	0.43	4.02	0.94	0.87
10	F10 / F12 / F14	0.43 / 0.51 / 0.67	4.02 / 4.92 / 5.51	1.14	1.06
12	F10 / F12 / F14	0.43 / 0.51 / 0.67	4.02 / 4.92 / 5.51	1.14	1.06
14	F12 / F14	0.55 / 0.71	4.92 / 5.51	1.14	1.06
16	F12 / F14	0.55 / 0.71	4.92 / 5.51	1.14	1.06

Weights


Approximate Weight (lbs)

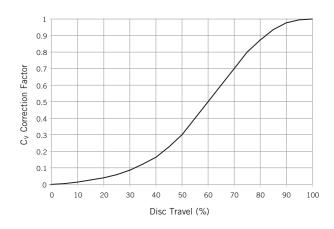

Size (in.)	Valve	w/ Handle	w/ Gear Box
1-1/2	1.27	1.98	_
2	1.66	2.38	-
2-1/2	2.20	3.24	5.29
3	3.09	4.12	6.17
4	3.86	4.89	6.94
5	5.62	6.83	9.81
6	7.28	8.49	11.46
8	13.23	14.88	20.50
10	26.46	-	41.01
12	41.89	-	56.44
14	51.00	_	70.00
16	61.00	-	85.00

Pressure – Temperature Ratings

Pressure - Temperature Ratings

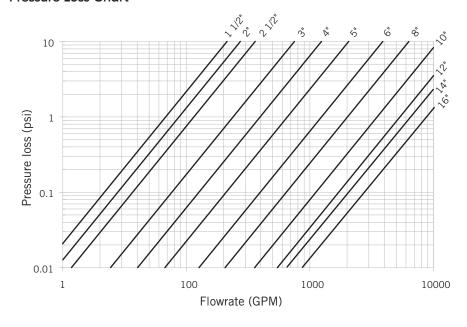
Flow Coefficients

The flow coefficient (C_v) represents the flow rate in gallons per minute (GPM) at 68°F for which there is a 1 psi pressure drop across the valve in the fully open position. These values are determined from an industry standard testing procedure which uses water as the flowing media (specific gravity of 1.0). To determine specific flow rate and pressure loss scenarios, one can use the following formula:


$$f = sg \times \left(\frac{Q}{C_V}\right)^2$$

Where,

- f is the pressure drop (friction loss) in psi,
- sg is the specific gravity of the fluid,
- Q is the flow rate in GPM,
- C_V is the flow coefficient.


Flow Coefficient Correction Factor

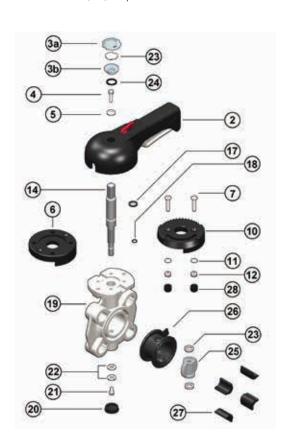
Use this chart to determine the appropriate flow coefficient correction factor depending on the amount of disc travel. As the valve cycles from fully open (100% travel) to fully closed (0% travel), the corresponding $C_{\rm v}$ value will decrease in accordance with the adjacent graph.

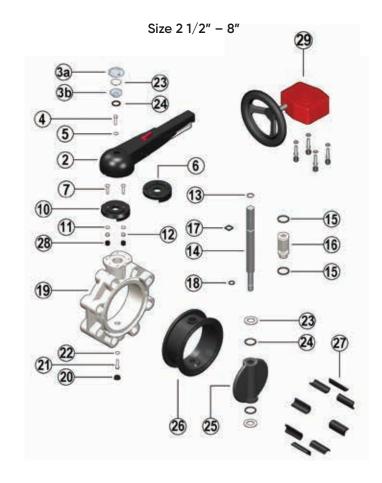
Size (in)	C_{v}
1-1/2	70
2	90
2-1/2	119
3	249
4	413
5	690
6	1309
8	2135
10	3724
12	5712
14	6587
16	8743

Pressure Loss Chart

Customize FX EasyFit

- A Transparent PVC Service Plug
- B PVC Tag Holder
- C EasyFit Multifunction Handle

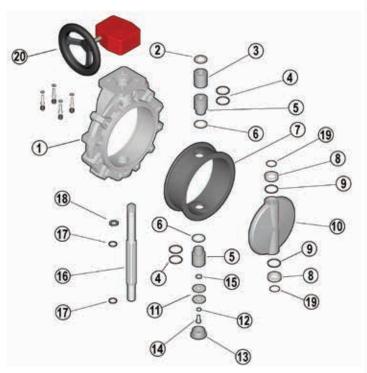

It is often necessary to customize a valve by labelling or tagging it in order to mark, protect and identify it.



The FK is equipped with a specially designed water resistant module for the customization of the valve. The module is housed in the handle and is composed of a transparent PVC service plug and a white tag holder. The transparent plug can be easily removed to be used for self-labelling on its blank side. Self labelling can be done in several ways, but we recommend designing and printing custom labels through the EasyFit Labelling System (LSE).

Components

Size 11/2" - 2"


#	Component	Material	Qty
* 1	position indicator	PA	1
* 2	handle	PVC	1
* 3 a,b	transparent service plug	PVC	1
* 4	screw	SS	1
* 5	washer	SS	1
6	spacer pad	GRPP	1
7	screw	SS	2
8	screw	SS	2
9	ratchet	SS	1
10	pad	GRPP	1
11	washer	SS	2
12	nut	SS	2
13	retaining ring	SS	1
* 14	shaft	420 SS	1

^{*} Spare parts available.

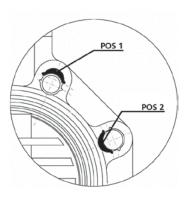
#	Component	Material	Qty
* 15	bushing o-ring	EPDM or FKM	2
16	bushing	Nylon	1
* 17	shaft o-ring	EPDM or FKM	1
* 18	shaft o-ring	EPDM or FKM	1
19	body	GRPP	1
20	cap	PE	1
21	screw	SS	1
22	washer	SS	1
* 23	anti-friction ring	PTFE	2
* 24	disc o-ring	EPDM or FKM	2
* 25	disc	CPVC / PP / PVC / ABS / PVDF	1
* 26	primary liner	EPDM or FKM	1
27	inserts	ABS	4 or 8
28	cap	PE	2
29	gearbox	Al, Steel	1

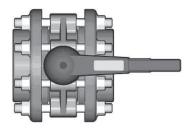
^{*} Spare parts available.

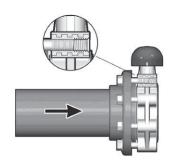
Size 10" - 12"

	Component	Material	Qty
1	body	GRPP	1
2	washer	SS	1
3	bushing	PP	1
* 4	bushing o-ring	EPDM or FKM	4
5	bushing for o-ring	PP	2
6	washer	PTFE	2
* 7	primary liner	EPDM or FKM	1
* 8	anti-friction ring	PTFE	2
* 9	disc o-ring	EPDM or FKM	2
* 10	disc	CPVC / PP / PVC / PVDF"	1
11	washer	SS	2
12	washer	SS	1
13	cap	PE	1
14	screw	SS	1
15	washer	SS	1
* 16	shaft	420 SS	1
* 17	shaft o-ring	EPDM or FKM	2
18	retaining ring	SS	1
19	o-ring	EPDM or FKM	2
20	gearbox	Al, Steel	1

*	Spare	parts	available.
---	-------	-------	------------


	Component	Material	Qty
1	body	PP-GR	1
2	washer	Stainless Steel	1
3	bush	PP-H	1
4	bush o-ring	EPDM or FKM	6
5	bush	PP-H	1
6	washer	PP-H	2
7	liner (EPDM or FKM)	EPDM or FKM	1
8	anti-friction ring	PTFE	2
9	disk O-ring	EPDM or FKM	2
10	disk	PP-H	1
11	washer	Stainless Steel	1
12	washer	Stainless Steel	1
13	protection plug	PE	1
14	screw	Stainless Steel	1
16	stem	Stainless Steel	1
17	stem o-ring	EPDM or FKM	2
18	seeger ring	Stainless Steel	1
20	gearbox	AI, Steel	1
21	pin	Stainless Steel	21
22	washer	Stainless Steel	1
23	position indicator	PA	1


Installation Procedures


- For the lever handle style, attach the handle (part #2 on previous pages) to the valve body (19) using the supplied bolt (4) and washer (5). Affix the cap (3) over the bolt.
- 2. For non-lugged style sizes 1-1/2" through 8", push the inserts (27) into the body holes according to the position chart below.
- 3. Ensure that the length of the bolts is sufficient for the size of valve being installed. Due to the varying designs of plastic flanges, there is no recommended minimum length. However, a length that results in at least 5 exposed threads on each side should be sufficient.
- 4. Please refer to the appropriate application sub-section:
 - a. For typical inline installation, ensure that the disc is in the partially closed position then carefully insert the valve into the piping system between the two flanges. Insert the bolts, washers, and nuts (if necessary), then hand tighten. Take care to properly line up the valve and flanges as any misalignment may cause leakage.
 - b. For lugged version end of line installation, ensure that the disc is in the partially closed position then carefully position the valve on the flange. Insert the bolts, and washers, then hand tighten. Take care to properly line up the valve and flange as any misalignment may cause leakage.
- 5. To avoid damage to the primary gasket, cycle the valve to the open position before tightening the bolts. For correct joining procedure, please refer to the section entitled, "Joining Methods Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". The bolts should be tightened in an even pattern to the nominal torque in the table below. These torque ratings are sufficient to maintain a watertight seal at the maximum rated operating pressure.

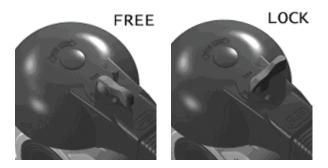
NOTE: If the process media is dirty or contains suspended particles, it is advisable to install the valve in an orientation in which the shaft is not vertical (see diagrams). Over time, particles may collect at the bottom of the valve posing a threat to the seal between the disc, liner, and shaft.

Size (in.)	ANSI 150 Insert Position	Nominal Bolt Torque (ft-lbs)
1-1/2	POS 1	7
2	-	9
2-1/2	POS 2	11
3	POS 2	13
4	POS 2	15
5	POS 2	26
6	POS 2	30
8	POS 2	41
10	_	52
12	-	52
14	_	55
16	-	55

Testing and Operating

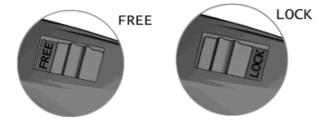
The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.


Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-overwater boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

The FK handle incorporates a locking mechanism that prevents unintentional rotation. When engaged, the spring-loaded handle release is locked and the valve cannot be cycled. A padlock can be installed through this portion of the handle as an additional safety precaution.


Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

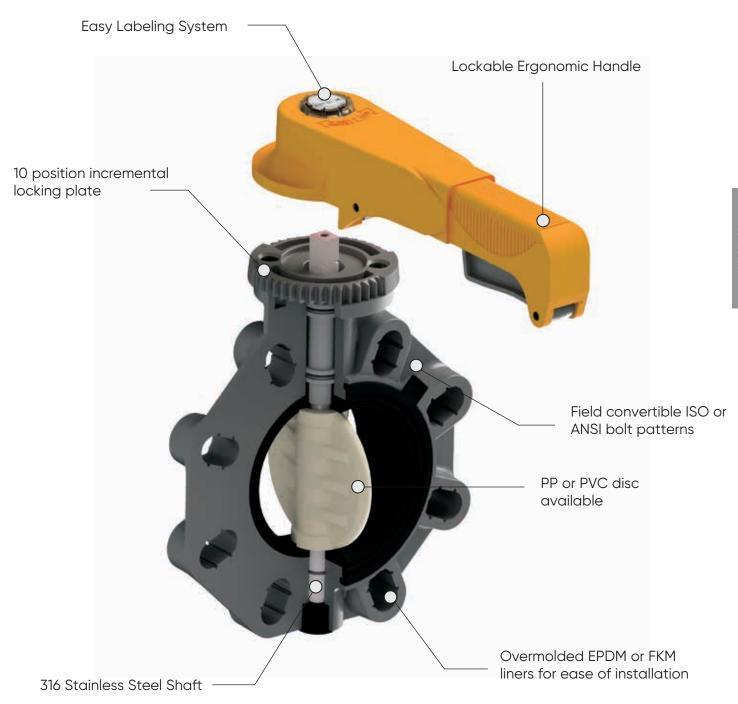
Sizes 1-1/2" to 2"

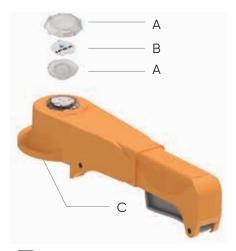
Sizes 2-1/2" to 8"

IPEX FX Series Butterfly Valves offer superior strength and chemical resistance in highly corrosive environments and process flow conditions. The special trapezoid shape of the liner and a serrated body cavity guarantee a bubble tight seal while keeping break-away torque at an absolute minimum. This versatile industrial valve features double self-lubricating seals, direct actuator mount capability, and the option of either a lever handle or mounted gear box. The FX lever handle includes the EasyFit labeling system for valve identification. FX Series Butterfly Valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

VALVE AVAILABILITY

Body Material	Polyvinyl Chloride (PVC)
Disc Material	Polypropylene (PP), PVC
Size Range	1-1/2" through 12"
Pressure	150 psi (1-1/2" to 10"), 120 psi (12")
Seals	EPDM or FKM
Body Style	Wafer
Control Style	Lever Handle or Mounted Gear Box
Actuator Control	Double Acting Pneumatic, Spring Return Pneumatic, Electric
End Connections	Flanged (ANSI 150)




ANSI B16.5

Components

Accessories

- A Transparent PVC Service Plug
- B PVC Tag Holder
- C EasyFit Multifunction Handle

Lever Handle

IPEX's orange lever handle is standard on all valves from $1\,1/2''$ through to 8". The handle can be installed at 0 degrees or the 180 degree position and comes equipped with a lockout tagout point to meet jobsite safety requirements.

It is often necessary to customize a valve by labelling or tagging it in order to mark, protect and identify it.

The FX is equipped with a specially designed water resistant module for the customization of the valve. The module is housed in the handle and is composed of a transparent PVC service plug and a white tag holder. The transparent plug can be easily removed to be used for self-labelling on its blank side. Self labelling can be done in several ways, but we recommend designing and printing custom labels through the EasyFit Labelling System (LSE).

Gearbox

The Gearbox is available for all butterfly valve sizes, but comes standard on all 10" and 12" butterfly valves. This is the ideal solution for areas where there is not enough room to swing a lever handle. With a 40:1 ratio, the gearbox enables the user to manually open and close the valve with ease.

2" Square Nut Operator

The square nut is constructed of durable and corrosion resistant PVC that snaps directly on the valve stem without the need for a mounting kit. The nut allows for remote operation of a valve in a sump or trench using an extended T-wrench or key.

Silicone Free

IPEX offers a silicone free valve that is cleaned in our ISO 14644-1 clean room. Our facility utilizes a three stage chemical cleaning process to ensure all valve components are free from any traces of silicone. The valve is double bagged within a dual skin silicone free package to prevent any contamination. In addition, a non-silicone lubricant is used for our butterfly valves to maintain efficient operation over the lifetime of the system

Factory Mounted Components

Electric Actuators

IPEX offers electric actuators from for our entire line of butterfly valves. All our electric actuators carry the IP 67 rating (Equivalent to NEMA 4X) CSA and ULC labels required for outdoor installations. Our standard units come with the following options:

- 240V DC, 120V AC or 220V AC control power
- Position Indicators
- · Permanent Lubrication
- · Heavy Duty Gears
- ISO 5211 double star mounting
- Corrosion prevention heaters
- · Limit Switches
- · Declutchable Manual Overrides
- 150% holding power
- 75% Duty Cylce
- Torque Limiters

Optional Features Include:

- Electronic positioner for 0-10V or 4-20mA signals.
- Fail Safe Battery Backup

Pneumatic Actuators

IPEX offers compact pneumatic actuators to meet the demands of industrial facilities. The actuators can be ordered as Normally open (air to close, spring to open), Normally closed (air to open, spring to close) or Dual acting (air to open, air to close). Our actuators come standard with the following options:

- Polyamide outer case for superior corrosion resistance.
- Preloaded spring cartridges (NO/NC)
- · Stainless Steel Pinions & Fasteners
- Namur Mounting
- Blowout Proof Protections
- ISO 5211 Output Drive
- · Versatile Control Media (Air, Hydraulic oil or Water)

Optional Features Include

- Housing: GRPP, Aluminum, or Stainless Steel
- NEMA 4/4X & NEMA 7 & 9
- NEMA 4X & NEMA 7 Namur Solenoid valves.
- Declutchable Gearbox
- Positioners

Limit Switches

IPEX offers a full range of compact Mechanical or inductive proximity switches. Limit switches send an electrical signal to the building's control system to indicate if the valve is in the open or closed position. The standard features include:

- · Customizable high visibility indicator
- · CSA ULC approval
- NEMA 4/4X rating.
- Technopolymer body

Stem Extensions

IPEX fabricates and mounts stem extensions on our butterfly valves. The stem extensions allow an operator to open or close a valve which may may have not been easily accessible. Our stem extensions are available with a carbon steel or stainless steel shaft. The shaft will be contained within a PVC pipe for superior chemical and corrosion resistance.

Available from 1 ft to 30 ft long

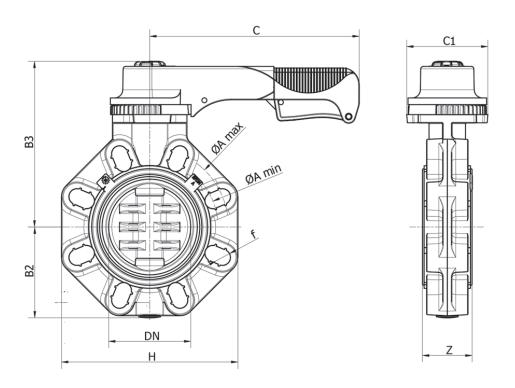
Valve Selection

Pressure Rating @ 730F Control Style Significant Number IPEX Body Body Liner Part Number Material Style Material Disc Material FXOV107 353089 1-1/2" 2" FXOV108 353090 FXOV109 052137 2-1/2" Lever FXOV110 353091 PVC Wafer EPDM 3" PΡ 150 PSI Handle FXOV111 353092 4" FXOV113 353093 6" FXOV114 353094 8" FXOV207 353097 1-1/2" FXOV208 353098 2" FXOV209 052139 2-1/2" Lever FXOV210 353099 PVC Wafer FKM 3" PΡ 150 PSI Handle FXOV211 353100 FXOV213 353101 6" FXOV214 353102 8" FXOV109G 254102 2-1/2" FXOV110G 254103 3" FXOV111G 254104 4" 150 PSI Wafer EPDM FXOV113G 254106 PVC PP Gearbox FXOV114G 254107 8" FXOV115G 254108 10" FXOV116G 254109 12" 120 PSI FXOV209G 254110 2-1/2" FXOV210G 254111 3" FXOV211G 254112 4" 150 PSI Wafer FKM FXOV213G Gearbox 254114 PVC 6" PΡ FXOV214G 254115 8" FXOV215G 254116 10" FXOV216G 254117 12" 120 PSI

Significant Number

Code	FX	0	V	1	07	G
Position	1	2	3	4	5	6

Ī	Position	Code	Description
	1		Model
	'	FX	Butterfly Valve
	2		Connection
	۷	0	ANSI 150 Flange – Wafer

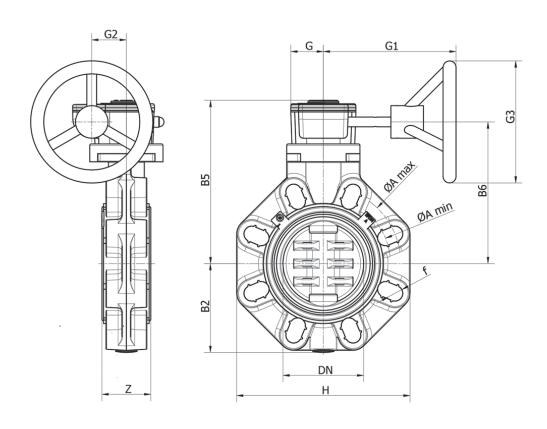

7	Body Material					
3	٧	PVC				

		Liner Material
4	1	EPDM
	2	FKM

	Size	Imperial	DN
	07	1-1/2"	40 mm
	08	2"	50 mm
	09	2-1/2"	65 mm
5	10	3"	80 mm
5	11	4"	100 mm
	13	6"	150 mm
	14	8"	200 mm
	15	10"	250 mm
	16	12"	300 mm

		Control Style
6		Lever Handle
	G	Gearbox

Dimensions

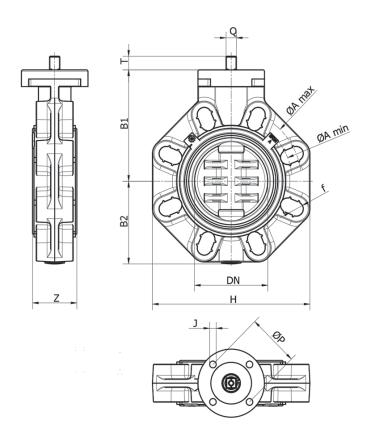


FX Butterly Valve – Lever Handle

Weight of FX with PP Disc

d	DN	ΦA min	Φ A max	B2	В3	С	C1	н	Φf	# holes	Z	EPDM Liner (lbs)	FKM Liner (lbs)
11/2"	40	3.90	4.29	2.36	5.63	6.89	3.54	5.20	0.75	4	1.30	2.05	2.09
2"	50	4.53	4.94	2.76	5.87	6.89	3.54	5.79	0.75	4	1.69	2.45	2.56
2 1/2"	65	5.04	5.67	3.15	6.14	6.89	3.54	6.50	0.75	4	1.81	2.80	2.98
3"	80	5.71	6.30	3.66	7.28	9.84	3.74	7.28	0.75	12	1.93	4.56	4.79
4"	100	6.50	7.48	4.21	7.83	9.84	3.74	8.31	0.75	8	2.20	5.56	5.90
5"	125	8.03	8.46	4.72	8.62	13.19	3.74	9.45	0.91	8	2.52	7.94	8.45
6"	150	9.06	9.53	5.28	9.13	13.19	3.74	10.55	0.91	8	2.76	9.91	10.60
8"	200	11.02	11.73	6.34	12.36	16.73	6.46	12.72	0.91	8	2.80	18.20	19.40

Unless otherwise stated all dimensions shown above are in inches

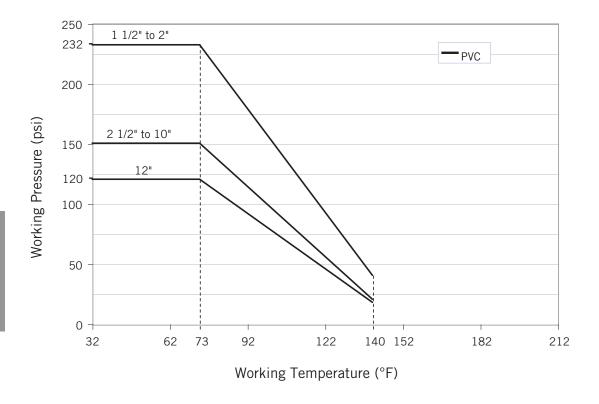


FX Butterfly Valve with Gearbox

Weight of FX with PP Disc

d	DN	ΦA min	Φ A max	B2	В5	В6	G	G1	G2	G3	Н	Φf	# holes	Z	EPDM Liner (lbs)	FKM Liner (lbs)
11/2"	40	3.90	4.29	2.36	6.34	5.24	1.89	5.31	1.54	4.92	5.20	0.75	4	1.30	5.15	5.19
2"	50	4.53	4.94	2.76	6.57	5.47	1.89	5.31	1.54	4.92	5.79	0.75	4	1.69	5.55	5.66
2 1/2"	65	5.04	5.67	3.15	6.85	5.75	1.89	5.31	1.54	4.92	6.50	0.75	4	1.81	5.90	6.08
3"	80	5.71	6.30	3.66	7.40	6.30	1.89	5.31	1.54	4.92	7.28	0.75	12	1.93	7.19	7.43
4"	100	6.50	7.48	4.21	7.95	6.85	1.89	5.31	1.54	4.92	8.31	0.75	8	2.20	8.20	8.54
5"	125	8.03	8.46	4.72	8.74	7.64	1.89	5.67	1.54	7.87	9.45	0.91	8	2.52	10.36	10.86
6"	150	9.06	9.53	5.28	9.25	8.15	1.89	5.67	1.54	7.87	10.55	0.91	8	2.76	12.32	13.01
8"	200	11.02	11.73	6.34	11.30	10.08	2.56	8.03	2.36	7.87	12.72	0.91	8	2.80	20.93	22.13
10"	250	14.25	14.25	8.27	14.72	13.31	3.46	9.29	2.99	9.84	15.94	1.00	12	4.49	45.87	48.02
12"	300	17.01	17.01	9.65	12.48	9.49	3.46	9.29	2.99	9.84	18.70	1.00	12	4.49	56.32	59.01

Unless otherwise stated all dimensions shown above are in inches


FX Butterfly Valve – Free Stem

Weight of FX with PP Disc

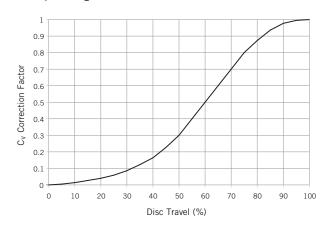
															WILITE	P DISC
d	DN	ΦA min	Ф A max	B1	B2	J	ФР		Т	Q	н	Φf	# holes	Z	EPDM Liner (lbs)	FKM Liner (lbs)
11/2	40	3.90	4.29	4.17	2.36	0.28	1.97	F05	0.47	0.43	5.20	0.75	4	1.30	1.60	1.65
2"	50	4.53	4.94	4.41	2.76	0.28	1.97	F05	0.47	0.43	5.79	0.75	4	1.69	2.01	2.11
2 1/2	" 65	5.04	5.67	4.69	3.15	0.28 - 0.35	1.97 – 2.76	F05 - F07	0.47	0.43	6.50	0.75	4	1.81	2.36	2.54
3"	80	5.71	6.30	5.24	3.66	0.35	2.76	F07	0.63	0.55	7.28	0.75	12	1.93	3.46	3.70
4"	100	6.50	7.48	5.79	4.21	0.35	2.76	F07	0.63	0.55	8.31	0.75	8	2.20	4.47	4.81
5"	125	8.03	8.46	6.57	4.72	0.35	2.76	F07	0.75	0.67	9.45	0.91	8	2.52	6.41	6.91
6"	150	9.06	9.53	7.09	5.28	0.35	2.76	F07	0.75	0.67	10.55	0.91	8	2.76	8.37	9.06
8"	200	11.02	11.73	8.94	6.34	0.43	4.02	F10	0.94	0.87	12.72	0.91	8	2.80	14.98	16.17
10"	250		14.25	9.76	8.27	0.43-0.51-0.67	4.02-4.92-5.51	F10-F12-F14	1.14	1.06	15.94	1.00	12	4.49	39.26	40.45
12"	300		17.01	12.01	9.65	0.43-0.51-0.67	4.02-4.92-5.51	F10-F12-F14	1.14	1.06	18.70	1.00	12	4.49	49.71	50.90

Unless otherwise stated all dimensions shown above are in inches

Pressure – Temperature Ratings

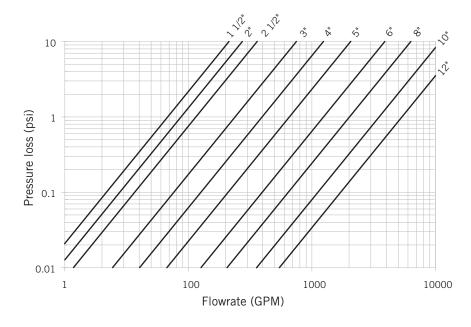
Flow Coefficients

The flow coefficient (C_v) represents the flow rate in gallons per minute (GPM) at 68°F for which there is a 1 psi pressure drop across the valve in the fully open position. These values are determined from an industry standard testing procedure which uses water as the flowing media (specific gravity of 1.0). To determine specific flow rate and pressure loss scenarios, one can use the following formula:

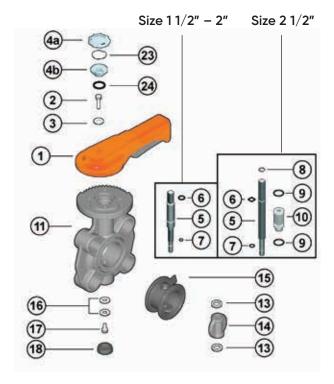

$$f = sg \times \left(\frac{Q}{C_V}\right)^2$$

Where,

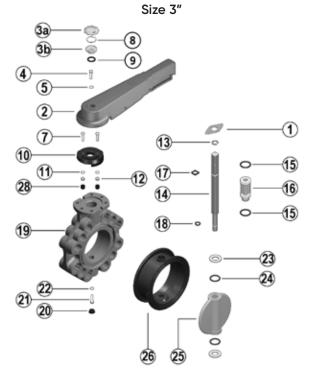
- f is the pressure drop (friction loss) in psi,
- sg is the specific gravity of the fluid,
- Q is the flow rate in GPM,
- C_V is the flow coefficient.

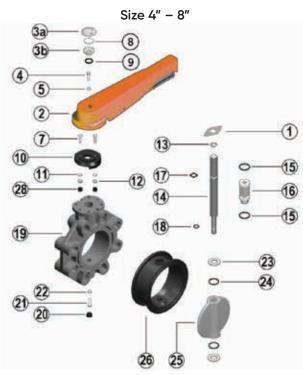

Flow Coefficient Correction Factor

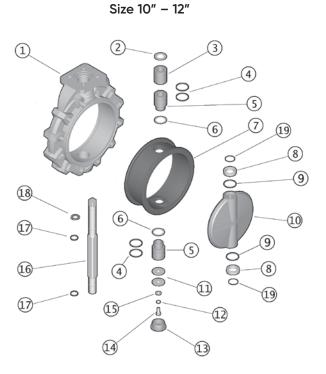
Use this chart to determine the appropriate flow coefficient correction factor depending on the amount of disc travel. As the valve cycles from fully open (100% travel) to fully closed (0% travel), the corresponding C_V value will decrease in accordance with the adjacent graph.



Size (in)	C_{v}
1-1/2	70
2	90
2-1/2	119
3	249
4	413
5	690
6	1309
8	2135
10	3724
12	5712


Pressure Loss Chart

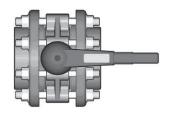

Components


#	Component	Material
1	Handle	PVC
2	Screw	304 Stainless Steel
3	Washer	304 Stainless Steel
4a	Plug Upper Part	PVC
4b	Plug Lower Part	PVC
5	Shaft	316 Stainless Steel
6	Shaft O-ring	EPDM or FKM
7	Shaft O-ring	EPDM or FKM
8	Seeger ring	304 Stainless Steel
9	Bush O-ring	EPDM o FKM
10	Bush	Nylon
11	Body	PVC
13	Anti-friction ring	PTFE
14	Disc	PPH
15	Primary Liner	EPDM, FKM
16	Washer	304 Stainless Steel
17	Srew	304 Stainless Steel
18	Protection Cap	PE
23	Tag Holder	NBR
24	Plug O-ring	PVC
16 17 18 23	Washer Srew Protection Cap Tag Holder	304 Stainless Steel 304 Stainless Steel PE NBR

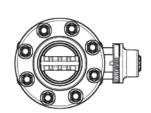
#	Component	Material
1	Position Indicator	ABS
2	Handle	PVC
3	Plug Upper Part	PVC
3b	Plug Lower Part	PVC 304 Stainless Steel
4 5	Screw Washer	304 Stainless Steel
6	Flange	GR-PP
7	Screw	304 Stainless Steel
8	Tag Holder	NBR
9	Plug O-Ring	PVC
10	Pad	GR-PP
11	Washer	304 Stainless Steel
12	Nut	304 Stainless Steel
13	Seeger Ring	304 Stainless Steel
14	Shaft	316 Stainless Steel
15	Bush O-ring	EPDM or FKM
16	Bush	Nylon
17	Shaft O-ring	EPDM or FKM
18	Shaft O-ring	EPDM or FKM
19	Body	PVC
20	Protection Cap	PE
21	Screw	304 Stainless Steel
22	Washer	304 Stainless Steel
23	Anti-friction Ring	PTFE
24	Dish O-ring	EPDM or FKM
25	Disc	PPH
26	Primary Liner	EPDM, FKM
28	Protection Cap	PE

#		Component	Material
	1	Position Indicator Handle	ABS PVC
	3	Plug Upper Part	PVC
	3b	Plug Lower Part	PVC
	4	Screw	304 Stainless Steel
	5	Washer	304 Stainless Steel
	6	Flange	GR-PP
	7	Screw	304 Stainless Steel
	8	Tag Holder	NBR
	9	Plug O-Ring	PVC
	10	Pad	GR-PP
	11	Washer	304 Stainless Steel
	12	Nut	304 Stainless Steel
	13	Seeger Ring	304 Stainless Steel
	14	Shaft	316 Stainless Steel
	15	Bush O-ring	EPDM or FKM
	16	Bush	Nylon
	17	Shaft O-ring	EPDM or FKM
	18	Shaft O-ring	EPDM or FKM
	19	Body	PVC
	20	Protection Cap	PE
	21	Screw	304 Stainless Steel
	22	Washer	304 Stainless Steel
	23	Anti-friction Ring	PTFE
	24	Dish O-ring	EPDM or FKM
	25	Disc	PPH
	26	Primary Liner	EPDM, FKM
	28	Protection Cap	PE

#	Component	Material
1	Body	PVC
2	Washer	304 Stainless Steel
3	Bushing	PP
4	Bushing O-ring	EPDM FKM
5	Bushing for O-ring	PP
6	Washer	PTFE
7	Primary Liner	EPDM FKM
8	Anti-friction Ring	PTFE
9	Disc O-ring	EPDM FKM
10	Disc	PP
11	Washer	304 Stainless Steel
12	Washer	304 Stainless Steel
13	Cap	PE
14	Screw	304 Stainless Steel
15	Washer	304 Stainless Steel
16	Shaft	316 Stainless Steel
17	Shaft O-ring	EPDM FKM
18	Retaining Ring	304 Stainless Steel
19	O-Ring	EPDM FKM

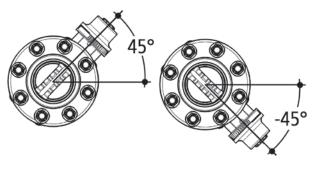

Installation Procedures

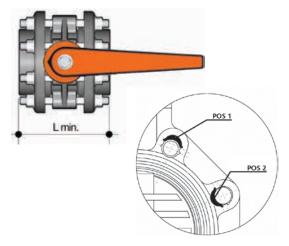
- For the lever handle style, attach the handle to the valve body using the supplied bolt and washer. Affix the cap over the bolt.
- For non-lugged style sizes 1-1/2" through 8", push the inserts into the body holes according to the position chart below.
- 3. Ensure that the length of the bolts is sufficient for the size of valve being installed. Due to the varying designs of plastic flanges, there is no recommended minimum length. However, a length that results in at least 5 exposed threads on each side should be sufficient.
- Please refer to the appropriate application subsection:
 - a. For typical inline installation, ensure that the disc is in the partially closed position then carefully insert the valve into the piping system between the two flanges. Insert the bolts, washers, and nuts (if necessary), then hand tighten. Take care to properly line up the valve and flanges as any misalignment may cause leakage.
- 5. To avoid damage to the primary gasket, cycle the valve to the open position before tightening the bolts. For correct joining procedure, please refer to the section entitled, "Joining Methods Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". The bolts should be tightened in an even pattern to the nominal torque in the table below. These torque ratings are sufficient to maintain a watertight seal at the maximum rated operating pressure.


NOTE: If the process media is dirty or contains suspended particles, it is advisable to install the valve in an orientation in which the shaft is not vertical (see diagrams). Over time, particles may collect at the bottom of the valve posing a threat to the seal between the disc, liner, and shaft.

ze	*ANSI 150	L min.	Lb/ft
mm	Insert Pos.	(incn)	
40	-	6	6.6
50	-	6	8.9
65	_	7	11.1
80	-	7	13.3
100	* POS 2	7	14.8
125	* POS 2	8.5	25.8
150	* POS 2	9.5	29.5
200	* POS 2	10.5	40.6
250	_	12.5	51.6
300	-	13.5	51.6
	mm 40 50 65 80 100 125 150 200 250	Insert Pos.	mm Insert Pos. (inch) 40 - 6 50 - 6 65 - 7 80 - 7 100 * POS 2 7 125 * POS 2 8.5 150 * POS 2 9.5 200 * POS 2 10.5 250 - 12.5

^{*} accessories




Clean Fluid

Suspended Particles

Dirty Fluid

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

Sample Specification

1. GENERAL

1.1 DEFINITIONS

- A. EPDM: Ethylene Propylene Diene Monomer
- B. FKM: Fluoropolymer
- C. PP: Polypropylene
- D. PTFE: Polytetrafluoroethylene Plastic (Teflon®)
- E. PVC: Polyvinyl Chloride Plastic
- F. SS: Stainless Steel

2. PRODUCTS

2.1 BUTTERFLY VALVES

- A. The basis of design is the IPEX FX Butterfly Valve:
 - a. Design:
 - 1. All materials listed below shall conform to NSF Standard 61 for use with potable water.
 - 2. The liner shall completely isolate the valve body from the process flow.
 - 3. The liner shall function as a flange gasket on both sides of the valve.
 - 4. The disc, seats, and seals shall be the only wetted parts.
 - 5. PTFE seated o-ring seals shall prevent the SS shaft from becoming wetted.
 - 6. The valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.
 - b. Body Material: Dark grey color PVC
 - c. Disc Material:
 - 1. PP Type 1 homopolymer per ASTM D4101.
 - or PVC, cell class 12454 per ASTM D1784.
 - d. Pressure Rating (psi / kPa): _____.
 - e. Connection Type: ANSI 150 Wafer Style flange.
 - f. Disc Liner & Stem Seals Material:
 - a. EPDM
 - b. or FKM
 - g. Shaft: 316 SS Standard ISO square dimension for direct mount actuation

h. Accessories:

- Lockable Lever Handle with transparent PVC plug and tag holder for valve identification.
- 2. Manual Gear box
- 3. 2" Square Nut Operator
- 4. Silicone Free valves shall:
 - Be cleaned and assembled in an ISO 14644-1 clean room.
 - b. Be double bagged within a dual skin silicone free package to prevent contamination during transportation.
 - c. Use a factory applied silicone free lubricant.
 - d. Have a factory applicable sticker indicating the valve is silicone free.
- i. Factory Mounted Options
 - 1. 90 degree Pneumatic Actuator
 - a. Shall be sized for 80 psi compressed air
 - b. Fluid type shall be:
 - 1. Air
 - or Water
 - or Nitrogen
 - c. Configuration
 - Dual acting (fluid to open, fluid to close)
 - or Normally Open (spring to open, fluid to close)
 - or Normally Closed (fluid to open, spring to close)
 - d. Shall be dual piston rack and pinion design with linear torque output.
 - e. Anti-blowout bidirectional pinion retention
 - f. Pre-loaded spring cartiridges for ease of servicing
 - g. ISO 5211 mounting
 - h. High Visibility Beacon that indicates "OPEN" or "CLOSED"
 - i. Body Material:
 - 1. Technopolymer
 - or GFPP
 - or Anodized Aluminum
 - or 316 Stainless Steel
 - j. All external fasteners shall be stainless steel.
 - k. The pneumatic actuator shall be factory installed and tested by the valve manufacturer.

- 2. Namur solenoid valve
 - Enclosure shall be:
 - a. Standard: NEMA 4/4X (IP 67 watertight)
 - b. Explosion Proof: NEMA 7/9
 - 2. 1/4" NPT connection
 - 3. CSA, UL & ATEX approval
 - 4. Voltage:
 - a. 12V DC
 - or 24V DC
 - or 120V DC
 - or OR 220V DC
 - 5. Operating temperature range
 - -4°F to 158°F
 - 6. Working pressure: 0 120 PSI
 - The solenoid control valve shall be supplied by the actuator manufacturer
- 90 degree Electric Actuator
 - a. Voltage & Duty Rating:
 - 12V DC **Duty: 50%** 1. or 24V DC **Duty: 75%** or 24V AC **Duty: 75%** or 100V - 240V AC **Duty: 75%**
 - b. Internal torque limiters, thermal protection, auxiliary limit switches, and heater for corrosion protection.
 - Enclosure:
 - 1. NEMA 4X technopolymer enclosure (indoor use only)
 - 2. NEMA 4X Aluminum enclosure (Indoor or Outdoor)
 - d. Manual override
 - e. Visual position indicator as standard to indicate the "OPEN" or "CLOSED" position.
 - ISO 5211 mounting
 - g. Options:
 - 1. Linear potentiometer (except VB015)
 - 2. Failsafe battery backup
 - The electric actuator shall be factory installed and tested by the valve manufacturer.

- 4. Limit Switch
 - a. Shall come with the following options:
 - b. Voltage:
 - 1. Up to 12V to 250V DC or AC
 - 2. Material:
 - a. Body, Box, Shaft, switches: Technopolymer
 - b. Fastners: SS
 - c. Seals: BUNA-N
 - d. High Visibility Beacon that indicates "OPEN" or "CLOSED"
 - e. NEMA 4/4X rating
 - f. CSA & UL listing required.
 - g. Supplied and installed by the valve manufacturer
- 5. Stem Extension
 - a. Factory fabricated and installed by the valve manufacturer.
 - b. Stem Material:
 - 1. Carbon Steel
 - 2. Stainless Steel
 - c. Outer Casing
 - 1. PVC
 - 2. Other: ____
 - d. Length shall be __ (rounded to nearest inch) OR as specified in the schedule.
 - 1. Minimum length 12",
 - Maximum length 360"
- ii. Acceptable Manufacturers
 - a. IPEX
 - b. Or approved alternate
 - 1. Requests for alternate material must be approved by the consulting engineer prior to the bid closing date.

IPEX FE Series Butterfly Valves incorporate many features of our industrial FK valve, yet the all PVC construction and EPDM liner make this valve the perfect choice for water and light industrial applications. The special trapezoid shape of the liner and serrated body cavity guarantee a bubble tight seal while keeping break-away torque at an absolute minimum. This versatile valve features double self-lubricating seals, direct actuator mount capability, and the option of either a lever handle or mounted gear box. The FE lever handle includes the EasyFit Labeling system for valve identification. FE Series Butterfly Valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

VALVE AVAILABILITY

Body Material:	PVC
Disc Material:	PVC
Size Range:	1-1/2" through 12"
Pressure:	232 psi (1-1/2" to 2"), 150 psi (2-1/2" to 8") 75 psi (10" to 12")
Seats:	EPDM
Seals:	EPDM
Body Style:	Wafer
Control Style:	Lever Handle or Mounted Gear Box
End Connections:	Flanged (ANSI 150)

Sample Specification

1.0 Butterfly Valves - FE

1.1 Material

- The valve body and disc shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.
- · The valve shaft shall be made of zinc plated steel.

1.2 Seats

The disc liner shall be made of EPDM.

1.3 Seals

The o-ring seals shall be made of EPDM.

2.0 Connections

2.1 Flanged style

 The ANSI 150 flanged connections shall conform to the dimensional standard ANSI B16.5.

3.0 Design Features

- · The valve shall be of wafer design.
- Manual control of the valve shall be achieved through the use of either a lever handle or mounted gear box (specifier must select one).
- The shaft shall have standard ISO square dimensions for direct mounting of actuators.
- The disc seat shall be a trapezoidal elastomeric liner and provide a bubble tight seal.
- The liner shall completely isolate the valve body from the process flow.
- The liner shall function as a flange gasket on both sides of the valve.
- The body cavity shall feature special channeling to prevent liner slippage and compression.
- The disc, seats, and seals shall be the only wetted parts.
- Teflon® seated o-ring seals shall prevent the shaft from becoming wetted.
- The handle shall incorporate a transparent PVC plug and tag holder for valve identification.

3.1 Pressure Rating

- All valves sizes 1-1/2" through 2" shall be rated at 232 psi at 73°F.
- All valves sizes 2-1/2" through 8" shall be rated at 150 psi at 73°F.
- All valves sizes 10" through 12" shall be rated at 75 psi at 73°F.
- The handle shall incorporate a transparent PVC plug and tag holder for valve identification.

3.2 Markings

 All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.3 Color Coding

- · All valves shall be color-coded dark gray.
- **4.0** All valves shall be Xirtec® PVC by IPEX or approved equal.

Valve Selection

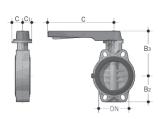
Size (inches)	Disc Material	Body Style	O-ring Material	IPEX Part Number	Pressure Rating @ 73°F	Size (inches):
1-1/2		Handle 053202		□ 1-1/2 □ 6 □ 2 □ 8		
2		Handle		053203	232 psi	□ 2-1/2 □ 10 □ 3 □ 12
2-1/2		Handle		053842		□ 4 □ 5
Z-1/Z		Gearbox		253842		
3		Handle		053081		Control Style:
3		Gearbox		253081		☐ Lever Handle
4		Handle	EPDM	053082		☐ Mounted Gear Box
4	PVC	Gearbox		253082	150 psi	
5	PVC	Handle		053843	150 psi	
<u></u>		Gearbox		253843		
6		Handle		053083		IPEX Part Number:
		Gearbox		253083		
8		Handle		053084		
0		Gearbox 253084				
10		Gearbox		052264	75 psi	

052265

Note: Size 14" through 24" valves are available upon request.

Gearbox

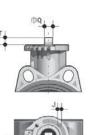
12


Dimensions

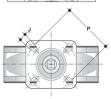
Dimension (inches)


Size	DN	Z	B ₂	B ₃	Н	Amin	Amax	f	# holes	Pattern
1-1/2	1.57	1.30	2.36	4.17	5.20	3.68	4.29	0.75	4	square
2	1.97	1.69	2.76	4.45	5.79	4.25	4.88	0.75	4	square
2-1/2	2.56	1.81	3.15	4.84	6.50	5.04	5.67	0.75	4	square
3	3.15	1.93	3.54	5.59	5.12	5.71	6.26	0.75	4	rectangular
4	3.94	2.20	4.13	5.98	5.91	6.50	7.48	0.75	4	rectangular
5	4.92	2.52	4.76	6.93	7.28	8.03	8.46	0.91	4	rectangular
6	5.91	2.76	5.20	7.44	8.27	9.06	9.53	0.91	4	rectangular
8	7.87	2.80	6.34	8.46	12.80	11.02	11.73	0.91	8	square
10	9.84	4.49	8.27	9.76	15.94	14.25	14.25	1.00	12	square
12	11.81	4.49	9.65	12.01	18.70	17.00	17.00	1.00	12	square

Lever Handle - Dimension (inches)


Size	DN	C ₁	C ₂	С	B ₂	B ₃	# holes	Pattern
1-1/2	1.57	1.77	1.65	6.89	2.36	5.35	4	square
2	1.97	1.77	1.65	6.89	2.76	5.63	4	square
2-1/2	2.56	1.77	2.09	9.84	3.15	6.61	4	square
3	3.15	1.77	2.09	9.84	3.54	7.17	4	rectangular
4	3.94	1.77	2.09	9.84	4.13	7.72	4	rectangular
5	4.92	1.77	2.09	13.19	4.76	8.46	4	rectangular
6	5.91	1.77	2.09	13.19	5.20	9.02	4	rectangular
8	7.87	2.56	3.23	16.73	6.34	12.17	8	square

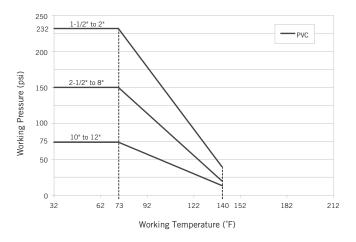
Mounted Gear Box - Dimension (inches)


Size	DN	G ₂	G	G ₁	G ₃	B ₂	B ₅	В ₆	# holes	
2-1/2	2.56	1.54	1.89	5.31	4.92	3.15	6.81	5.71	4	square
3	3.15	1.54	1.89	5.31	4.92	3.54	7.36	6.26	4	rectangular
4	3.94	1.54	1.89	5.31	4.92	4.13	7.91	6.81	4	rectangular
5	4.92	1.54	1.89	5.67	7.87	4.76	8.66	7.56	4	rectangular
6	5.91	1.54	1.89	5.67	7.87	5.20	9.25	8.15	4	rectangular
8	7.87	2.36	2.56	6.89	7.87	6.34	11.34	10.12	8	square
10	9.84	2.99	3.46	9.29	9.84	8.27	12.48	11.06	12	square
12	11.81	2.99	3.46	9.29	9.84	9.65	14.72	13.31	12	square

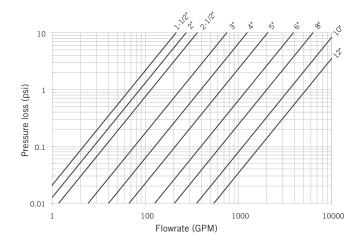
Sizes 1-1/2" to 8"

Sizes 10" to 12"

Mounting Pad for Actuation - Dimension (inches)


Size	ISO		Р	Т	Q
1-1/2	F05	0.28	1.97	0.47	0.43
2	F05	0.28	1.97	0.47	0.43
2-1/2	F05 / F07	0.28 / 0.35	1.97 / 2.76	0.47	0.43
3	F07	0.35	2.76	0.63	0.55
4	F07	0.35	2.76	0.63	0.55
5	F07	0.35	2.76	0.75	0.67
6	F07	0.35	2.76	0.75	0.67
8	F10	0.43	4.02	0.94	0.87
10	F10 / F12 / F14	0.43 / 0.51 / 0.67	4.02 / 4.92 / 5.51	0.94	0.87
12	F10 / F12 / F14	0.43 / 0.51 / 0.67	4.02 / 4.92 / 5.51	0.94	0.87

Weights


Approximate Weight (lbs)

Size	Valve	w/ Handle	w/ Gear Box
1-1/2	1.27	1.82	-
2	1.66	2.23	-
2-1/2	2.20	3.13	5.25
3	3.09	3.62	5.73
4	3.86	4.39	6.50
5	5.62	6.68	9.70
6	7.28	8.22	11.24
8	13.23	18.17	20.41
10	26.46	-	41.01
12	41.89	-	56.44

Pressure - Temperature Ratings

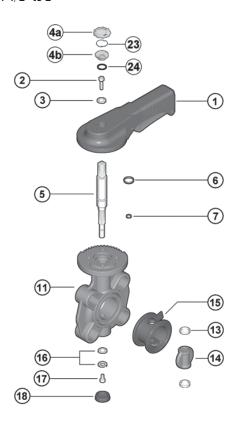
Pressure Loss Chart

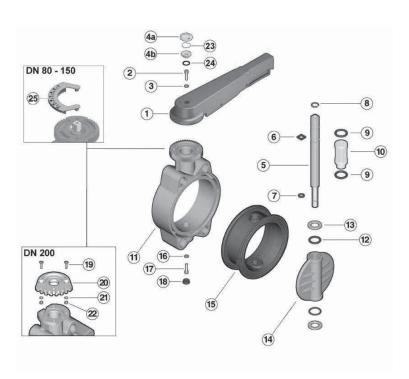
Flow Coefficients

Size	C _v
1-1/2	70
2	90
2-1/2	119
3	249
4	413
5	690
6	1309
8	2135
10	3724
12	5712

Components

It is often necessary to customize a valve by labelling or tagging it in order to mark, protect and identify it.

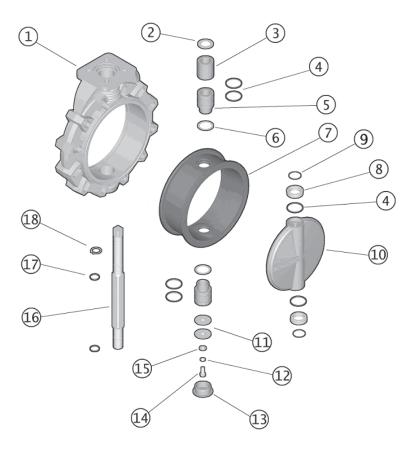



The FE is equipped with a specially designed water resistant module for the customization of the valve. The module is housed in the handle and is composed of a transparent PVC service plug and a white tag holder. The transparent plug can be easily removed to be used for self-labelling on its blank side. Self labelling can be done in several ways, but we recommend designing and printing custom labels through the EasyFit Labelling System (LSE).

Components

Sizes 1-1/2" to 2"

Sizes 2-1/2" to 8"

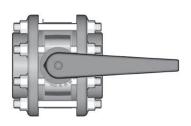

#	Component	Material	Qty
* 1	handle	PVC	1
2	screw	SS	1
3	washer	SS	1
4	cap	PE	1
4 a,b	transparent service plug	PVC	1
* 5	shaft	zinc plated steel	1
* 6	shaft o-ring	EPDM	1
* 7	shaft o-ring	EPDM	1
8	retaining ring	SS	1
* 9	bushing o-ring	EPDM	2
10	bushing	Nylon	1
11	body	PVC	1
* 12	disc o-ring	EPDM	2

	Component	Material	Qty
* 13	anti-friction ring	PTFE	2
* 14	disc	PVC	1
* 15	primary liner	EPDM	1
16	washer	SS	1
17	screw	SS	1
18	cap	PE	1
19	screw	SS	2
20	pad	PVC	1
21	washer	SS	2
22	nut	SS	2
23	tag holder	PVC	1
24	seal (o-ring)	NBR	1
25	position indicator	PVC	1

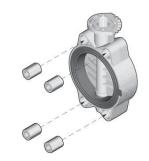
^{*} Spare parts available

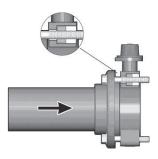
Components

Sizes 10" to 12"


#	Component	Material	Qty
1	body	PVC	1
2	washer	SS	1
3	bushing	PP	1
* 4	bushing o-ring	EPDM	4
5	bushing for o-ring	PP	2
6	washer	PTFE	2
* 7	primary liner	EPDM	1
* 8	anti-friction ring	PTFE	2
* 9	disc o-ring	EPDM	2
* 10	disc	PVC	1
11	washer	SS	2
12	washer	SS	1
13	cap	PE	1
14	screw	SS	1
15	washer	SS	1
* 16	shaft	Zinc Plated Steel	1
* 17	shaft o-ring	EPDM	2
18	retaining ring	SS	1

^{*} Spare parts available.


Installation Procedures


- 1. For the lever handle style, attach the handle (part #1 on previous pages) to the valve body (11) using the supplied bolt (2) and washer (3). Affix the cap (4) over the bolt.
- Ensure that the length of the bolts is sufficient for the size of valve being installed. Due to the varying designs of plastic flanges, there is no recommended minimum length. However, a length that results in at least 5 exposed threads on each side should be sufficient.
- 3. Please refer to the appropriate application sub-section:
 - a. For typical inline installation, ensure that the disc is in the partially closed position then carefully insert the valve into the piping system between the two flanges. Insert the bolts, washers, and nuts (if necessary), then hand tighten. Take care to properly line up the valve and flanges as any misalignment may cause leakage.
 - b. For lugged version end of line installation, insert the necessary steel lugs into the valve body. Ensure that the disc is in the partially closed position then carefully position the valve on the flange. Insert the bolts, and washers, then hand tighten. Take care to properly line up the valve and flange as any misalignment may cause leakage.
 - 4. To avoid damage to the primary gasket, cycle the valve to the open position before tightening the bolts. For correct joining procedure, please refer to the section entitled, "Joining Methods Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". The bolts should be tightened in an even pattern to the nominal torque in the table below. These torque ratings are sufficient to maintain a watertight seal at the maximum rated operating pressure.

Note: End of line installation will cause the maximum rated pressure to be reduced to the values listed in the table below. If the process media is dirty or contains suspended particles, it is advisable to install the valve in an orientation in which the shaft is not vertical (see diagrams). Over time, particles may collect at the bottom of the valve posing a threat to the seal between the disc, liner, and shaft.

(psi)
90
90
90
90
90
90
60
60
-
-

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the system.
 Be sure to depressurize and drain the isolated branch before continuing.
- 2. Cycle the valve to a partially open position then loosen each bolt holding the valve to the pipe flange(s). Please refer to the section entitled, "Joining Methods Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" for a recommended bolt tightening pattern diagram. Follow the same pattern when disassembling the flanged joint(s) then carefully remove the valve from the line.

Sizes 1-1/2" to 8"

- For the lever handle style, remove the protection cap (4) then loosen the screw (2) and washer (3) to remove the handle (1).
- 4. For the mounted gear box style, loosen and remove the bolts and washers fixed to the gear box. Carefully remove the gear box from the valve taking care not to damage the stem.
- For 8" sizes, loosen and remove the bolts (19), washers (21), and nuts (22) then remove the spacer pad (20) from the valve body.
- Remove the cap (18) then loosen and remove the screw (17) and washer(s) (16) from the base of the valve body.
- 7. Carefully pull the shaft (5) out of the valve body then remove the disc (14).
- 8. Remove the primary liner (15) from the valve body.
- 9. Remove the nylon bushing (10) and o-rings (9) from the valve body (sizes 2-1/2" to 8").
- 10. Remove the disc anti-friction rings (13), and o-rings (12, sizes 2-1/2" to 8").
- 11. Remove the retaining ring (8, sizes 2-1/2" to 8") and o-rings (6, 7) from the shaft.
- 12. The valve components can now be checked for problems and/or replaced.

Sizes 10" to 12"

- Loosen and remove the bolts and washers fixed to the gear box. Carefully remove the gear box from the valve taking care not to damage the stem.
- 4. Remove the cap (13) then loosen and remove the screw (14) and washers (11, 12, and 15) from the base of the valve body (1).
- 5. Carefully pull the shaft (16) out of the valve body then remove the disc (10).
- 6. Remove the primary liner (7) from the valve body
- 7. Remove the upper and lower bushings (3, 5), washers (2, 6), and o-rings (4) from the valve body.
- 8. Remove the disc anti-friction rings (8) and o-rings (4, 9).
- 9. Remove the retaining ring (18) and o-rings (17) from the shaft.
- 10. The valve components can now be checked for problems and/or replaced.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

Sizes 1-1/2" to 8"

- Insert the primary liner (15) into the valve body (11).
 Ensure that the proper holes line up with those on the body.
- Properly fit the o-rings (9) on the nylon bushing (10) (sizes 2-1/2" to 8") then insert into the valve body from above.
- 3. Properly fit the disc o-rings (12, sizes 2-1/2" to 8") and anti-friction rings (13) on the disc (14), then insert into the valve liner taking care to center the holes.
- 4. Properly fit the o-rings (6, 7) and retaining ring (8, sizes 2-1/2" to 8") in their grooves on the shaft (6), then carefully insert into the valve body from above.
- Fasten the shaft at the base of the valve body using the screw (17) and washer (16). Affix the cap (18) over the bolt.
- 6. For 8" sizes, affix the spacer pad (20) to the valve body using the screws (19), washers (21), and nuts (22).
- 7. For the lever handle style, affix the handle (1) using the screw (2), washer (3), and protection cap (4).
- 8. For the mounted gear box style, carefully place the gear box on the stem, lining up the holes. Fasten using the necessary bolts and washers.

Sizes 10" to 12"

- Insert the primary liner (7) into the valve body (1).
 Ensure that the proper holes line up with those on the body.
- Properly fit the o-rings (4) on the upper and lower bushings (3, 5) then insert into the valve body from above and below along with the washers (2, 6).
- 3. Properly fit the disc o-rings (4, 9) and anti-friction rings (8) on the disc (10), then insert into the valve liner taking care to center the holes.
- 4. Properly fit the o-rings (17) and retaining ring (18) in their grooves on the shaft (16), then carefully insert into the valve body from above.
- 5. Fasten the shaft at the base of the valve body using the screw (14) and washers (11, 12, and 15). Affix the cap (13) over the bolt.
- Carefully place the gear box on the stem, lining up the holes. Fasten using the necessary bolts and washers.

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important Points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

The FE handle incorporates a locking mechanism that prevents unintentional rotation. The spring-loaded handle must be depressed to cycle the valve. A padlock can be installed through this portion of the handle as an additional safety precaution.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

NOTES

SECTION FOUR: DIAPHRAGM VALVES

DK SERIES MANUAL DIAPHRAGM VALVES

IPEX DK Series Dialock® Diaphragm Valves are the ideal solution for modulating flow and controlling dirty or abrasive fluids in a variety of applications. The modular nature of these valves results in many material, body style, and diaphragm options. The re-designed weir-style body has significantly improved the DK's flow rate compared to the old design and it facilitates precise linear flow regulation through the valve's full range of operation. The new innovative and patented Dialock locking mechanism allows the manual handwheel to be adjusted and locked in over 300 positions.

VALVE AVAILABILITY

Body Material:	PVC, CPVC, PP, PVDF					
Size Range:	1/2" t hrough 2-1/2"					
Pressure:	150 psi					
Diaphragm:	EPDM, FKM or PTFE (EPDM backed)					
Control Style:	Manual Handwheel					
End Connections:	Spigot, True Union (Socket, Threaded) Flanged (ANSI 150)					

ASTM D1784 ASTM D1785 ASTM D4101 ASTM D2426 ASTM D2467 ASTM D2467 ASTM F441 ASTM F437 ASTM F439 ASTM F1498

ISO 3609 ISO 10931

ANSI B16.5

Sample Specification

1.0 Diaphragm Valves - DK Manual

1.1 Material

- The valve body, including end connectors and unions, shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.
- or The valve body, including end connectors and unions, shall be made of Corzan® CPVC compound which shall meet or exceed the requirements of cell classification 23447 according to ASTM D1784.
- or The valve body, including end connectors and unions, shall be made of stabilized PP homopolymer compound, also containing a RAL 7032 pigment, which shall meet or exceed the requirements of Type I Polypropylene according to ASTM D4101.
- or The valve body, including end connectors and unions, shall be made of virgin, non-regrind PVDF compound which shall meet or exceed the requirements of Table 1 according to ASTM D3222.
- The valve bonnet assembly shall be made of high temperature, high strength, glass-filled polypropylene (GFPP).

1.2 Diaphragm

- The diaphragm shall be made of EPDM.
- or The diaphragm shall be made of FKM.
- or The diaphragm shall be made of PTFE (backed with EPDM).

2.0 Connections

2.1 Spigot Style

- The IPS spigot PVC end connectors shall conform to the dimensional standard ASTM D1785.
- or The IPS spigot CPVC end connectors shall conform to the dimensional standard ASTM F441.
- or The Metric spigot PP end connectors shall conform to the dimensional standard ISO 3609.
- or The Metric spigot PVDF end connectors shall conform to the dimensional standard ISO 10931.

2.2 Socket Style

- The IPS socket PVC end connectors shall conform to the dimensional standards ASTM D2466 and ASTM D2467.
- or The IPS socket CPVC end connectors shall conform to the dimensional standard ASTM F439.
- or The Metric socket PP end connectors shall conform to the dimensional standard ISO 3609.
- or The Metric socket PVDF end connectors shall conform to the dimensional standard ISO 10931.

2.3 Threaded Style

- The female NPT threaded PVC end connectors shall conform to the dimensional standards ASTM D2464, ASTM F1498, and ANSI B1.20.1.
- or The female NPT threaded CPVC end connectors shall conform to the dimensional standards ASTM F437, ASTM F1498, and ANSI B1.20.1.

2.4 Flanged Style

- The ANSI 150 flanged PVC end connectors shall conform to the dimensional standard ANSI B16.5.
- or The ANSI 150 flanged CPVC end connectors shall conform to the dimensional standard ANSI B16.5.
- or The ANSI 150 flanged PP end connectors shall conform to the dimensional standard ANSI B16.5.
- or The ANSI 150 flanged PVDF end connectors shall conform to the dimensional standard ANSI B16.5.

3.0 Design Features

- All valves shall be weir-style for throttling applications.
- All valves shall have a manual handwheel that can be adjusted and locked in over 300 positions.
- The manual handwheel shall be made of high strength glass-filled polypropylene (GFPP).
- All valves shall have a graduated optical position indicator to allow for a visual check of the valve position.
- All valves shall have a custom labelling plate housed in a transparent cap.
- All through bolts shall be made of stainless steel.
- The valve shall incorporate a feature that allows an identification tag to be easily affixed to the valve body.
- Bodies of PVC, CPVC and PP valves shall have brass mounting inserts.
- Bodies of PVDF valves shall have stainless steel mounting inserts.

3.1 Pressure Rating

• All valves shall be rated at 150 psi at 73°F.

3.2 Markings

 All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.3 Color Coding

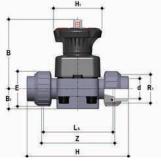
- · All PVC valves shall be color-coded dark gray.
- or All CPVC valves shall be color-coded light gray.
- or All PP valves shall be color-coded beige gray.
- or All PVDF valves shall not be color-coded and be white in appearance.
- All bonnet assemblies shall be color-coded black.
- **4.0** All valves shall be Xirtec® PVC PVC, Xirtec® CPVC, PP or PVDF by IPEX or approved equal.

Valve Selection

V/ ach va	IPEX Part Number		D	Во	dy Material:						
Valve Size	Body	Diaphragm		True	Union		Pressure Rating		PVC		
(inches)	Material	Material	IPS	IPS	FNPT	ANSI 150	@ 73°F		CPVC		
		55514	Spigot	Socket	Threaded	Flanged			CFVC		
	51.40	EPDM	354175	354202	354004	354220					
	PVC	FKM	354184	354214	354016	354229					
1/2		PTFE	354193	354208	354010	354238		Siz	e (inches):		
		EPDM	354247	354274	354022	354292			1/2		1 1/0
	CPVC	FKM	354256	354280	354028	354301			1/2		1-1/2
		PTFE	354265	354286	354034	354310			3/4		2 1/2
		EPDM	354176	354203	354005	354221			1 1-1/4		2-1/2
	PVC	FKM	354185	354215	354017	354230			1-1/4		
3/4		PTFE	354194	354209	354011	354239					
0, 1		EPDM	354248	354275	354023	354293					
	CPVC	FKM	354257	354281	354029	354302					
		PTFE	354266	354287	354035	354311					
		EPDM	354177	354204	354006	354222		Dic	aphragm:		
	PVC	FKM	354186	354216	354018	354231			EPDM		
1 .		PTFE	354195	354210	354012	354240			FKM		
ı		EPDM	354249	354276	354024	354294			PTFE (EPDM I	Racko	d)
	CPVC	FKM	354258	354282	354030	354303			FIIL (LEDITI	Jucke	u)
		PTFE	354267	354288	354036	354312					
		EPDM	354178	354205	354007	354223					
	PVC	FKM	354187	354217	354019	354232					
1.1/1		PTFE	354196	354211	354013	354241	150 .	Fne	d Connection	ıs:	
1-1/4	CPVC	EPDM	354250	354277	354025	354295	150 psi				
		FKM	354259	354283	354031	354304			Spigot (IPS)		
		PTFE	354268	354289	354037	354313			True Union (IPS Socket)		
		EPDM	354179	354206	354008	354224			True Union (F		
	PVC	FKM	354188	354218	354020	354233			Flanged (AN	SI 150)	
/-		PTFE	354197	354212	354014	354242					
1-1/2		EPDM	354251	354278	354026	354296					
	CPVC	FKM	354260	354284	354032	354305					
		PTFE	354269	354290	354038	354314		IPE	X Part Numb	er:	
		EPDM	354180	354207	354009	354225					
	PVC	FKM	354189	354219	354021	354234					
		PTFE	354198	354213	354015	354243					
2 .		EPDM	354252	354279	354027	354297					
	CPVC	FKM	354261	354285	354033	354306					
		PTFE	354270	354291	354039	354315					
		EPDM	354181	-	-	354226					
	PVC	FKM	354190	-	_	354235					
		PTFE	354199	_	_	354244					
2-1/2		EPDM	354253	_		354298					
	CPVC	FKM	354262	_	_	354307					
	J. V J	PTFE	354271	_	_	354316					
		IIIL	JJ42/1			334310					

Valve Selection, continued

	_	_	IPEX Part Number			Body Material:				
Valve	Body	Diaphragm _	True l	Union	Pressure					
Size (mm)	Material	Material	Metric	 Metric	Rating @ 73°F	□ PP				
			Spigot	Socket	@ 75 1	□ PVDF				
		EPDM	354219	354346						
	PP	FKM	354328	354352						
20		PTFE	354337	354358						
20		EPDM	354364	354391		Size (inches):				
	PVDF	FKM	354373	354397		□ 20mm □ 50mm				
		PTFE	354382	354403						
		EPDM	354220	354347		□ 25mm □ 63mm				
	PP	FKM	354329	354353		□ 32mm □ 75mm				
25		PTFE	354338	354359		□ 40mm				
23		EPDM	354365	354392						
	PVDF	FKM	354374	354398						
		PTFE	354383	354405						
		EPDM	354221	354348						
	PP	FKM	354330	354354		Diaphragm:				
32		PTFE	354339	354360		□ EPDM				
52		EPDM	354366	354393		□ FKM				
	PVDF	FKM	354375	354399		□ PTFE (EPDM Backed)				
		PTFE	354384	354406		L THE (El DIT Backea)				
		EPDM	354222	354349						
	PP	FKM	354331	354355						
40		PTFE	354340	354361	150 psi					
40	PVDF	EPDM	354367	354394	130 (28)	End Connections:				
		FKM	354376	354400		End Connections.				
		PTFE	354385	354407		☐ Spigot (Metric)				
		EPDM	354223	354350		☐ True Union (Metric Socket)				
	PP	FKM	354332	354356						
50		PTFE	354341	354362						
30		EPDM	354368	354395						
	PVDF	FKM	354377	354401						
		PTFE	354386	354408						
		EPDM	354224	354351		IPEX Part Number:				
	PP	FKM	354333	354357						
63		PTFE	354342	354363						
03		EPDM	354369	354396						
	PVDF	FKM	354378	354402						
		PTFE	354387	354409						
		EPDM	354225	-						
	PP	FKM	354334	-						
75		PTFE	354343	-						
/5		EPDM	354370							
	PVDF	FKM	354379	-						
		PTFE	354388	-						


Dimensions

IPS Spigot Connections

B d d

	Dimension (inches)							
Size	d(in) PVC/CPVC	d(mm) PP/PVDF	В	В,	н	Н,	L	
1/2	0.84	20	4.02	0.98	4.88	3.15	0.63	
3/4	1.05	25	4.13	1.18	5.67	3.15	0.75	
1	1.32	32	4.49	1.30	6.06	3.15	0.87	
1-1/4	1.66	40	4.69	1.18	6.85	3.15	1.02	
1-1/2	1.90	50	5.79	1.38	7.64	4.72	1.22	
2	2.38	63	6.77	1.81	8.82	4.72	1.50	
2-1/2	2.88	75	6.77	1.81	11.18	4.72	1.73	

IPS Socket Connections

Dimension (inches)

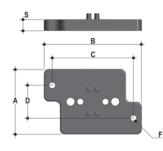
Size	d(in) PVC/CPVC	d(mm) PP/PVDF	В	B ₁	Е	H PVC/CPVC	H PP/PVDF	Hı	LA	R ₁	Z PVC/CPVC	Z PP/PVDF
1/2	0.84	20	4.02	0.98	1.61	5.63	5.08	3.15	3.54	1	3.86	3.94
3/4	1.05	25	4.13	1.18	1.97	6.57	6.06	3.15	4.25	1-1/4	4.53	4.57
1	1.32	32	4.49	1.30	2.28	7.09	6.61	3.15	4.57	1-1/2	4.80	4.88
1-1/4	1.66	40	4.69	1.18	2.83	8.19	7.56	3.15	5.28	2	5.67	5.51
1-1/2	1.90	50	5.79	1.38	3.11	9.21	8.74	4.72	6.06	1-1/4	6.46	6.30
2	2.38	63	6.77	1.81	3.86	10.71	10.47	4.72	7.24	2-3/4	7.68	7.48

FNPT Threaded Connections

Dimension (inches)

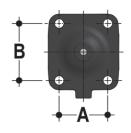
R	В	B ₁	Е	Н	H,	$L_{\scriptscriptstyle{A}}$	R ₁	Z
1/2	4.02	0.98	1.61	5.16	3.15	3.54	1	3.82
3/4	4.13	1.18	1.97	5.94	3.15	4.25	1-1/4	4.65
1	4.49	1.30	2.28	6.50	3.15	4.57	1-1/2	5.00
1-1/4	4.69	1.18	2.83	7.40	3.15	5.28	2	5.71
1-1/2	5.79	1.38	3.11	8.19	4.72	6.06	2-1/4	6.50
2	6.77	1.81	3.86	9.69	4.72	7.24	2-3/4	7.68

Dimension (inches)


		(
Size	А	L	J
1/2	2.91	0.98	M6 x 10
3/4	2.91	0.98	M6 x 10
1	3.43	0.98	M6 x 10
1-1/4	3.43	0.98	M6 x 10
1-1/2	4.49	1.75	M8 x 14
2	5.35	1.75	M8 x 14
2-1/2	5.35	1.75	M8 x 14

Dimensions

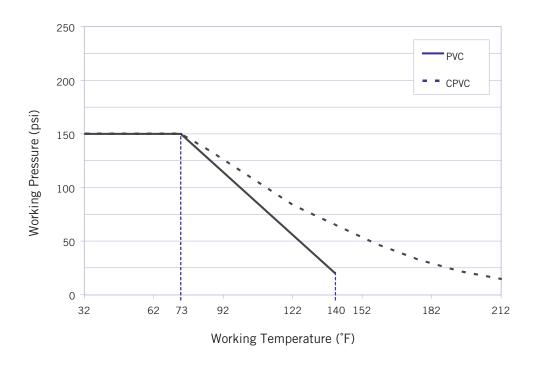
ANSI 150 Flanged (Vanstone) Connections

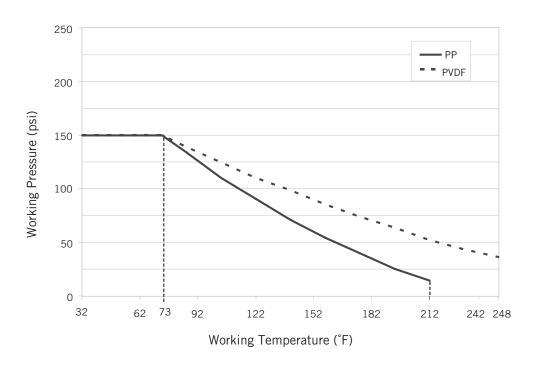

			D	imension (i	nches)			
1	Size	В	B ₁		Н	H ₁	Sp	# holes
	1/2	4.02	0.98	5/8	4.25	3.15	0.53	4
	3/4	4.13	1.18	5/8	5.91	3.15	0.53	4
	1	4.49	1.30	5/8	6.30	3.15	0.55	4
	1-1/4	4.69	1.18	5/8	7.09	3.15	0.55	4
	1-1/2	5.79	1.38	5/8	7.87	4.72	0.63	4
	2	6.77	1.81	3/4	9.06	4.72	0.63	4
	2-1/2	6.77	1.81	3/4	11.42	4.72	0.83	4

Wall/Panel Mounting Plate

Dimension (inches)						
Size	Α	В	С	D	F	S
1/2	2.56	3.82	3.19	1.30	0.22	0.43
3/4	2.56	3.82	3.19	1.30	0.22	0.43
1	2.56	3.82	3.19	1.30	0.22	0.43
1-1/4	2.56	3.82	3.19	1.30	0.22	0.43
1-1/2	2.56	5.67	5.12	1.30	0.26	0.43
2	2.56	5.67	5.12	1.30	0.26	0.43
2-1/2	2.56	5.67	5.12	1.30	0.26	0.43

Diaphragm

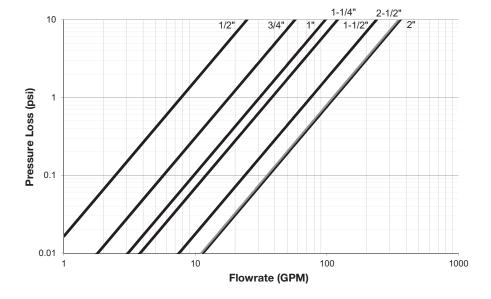


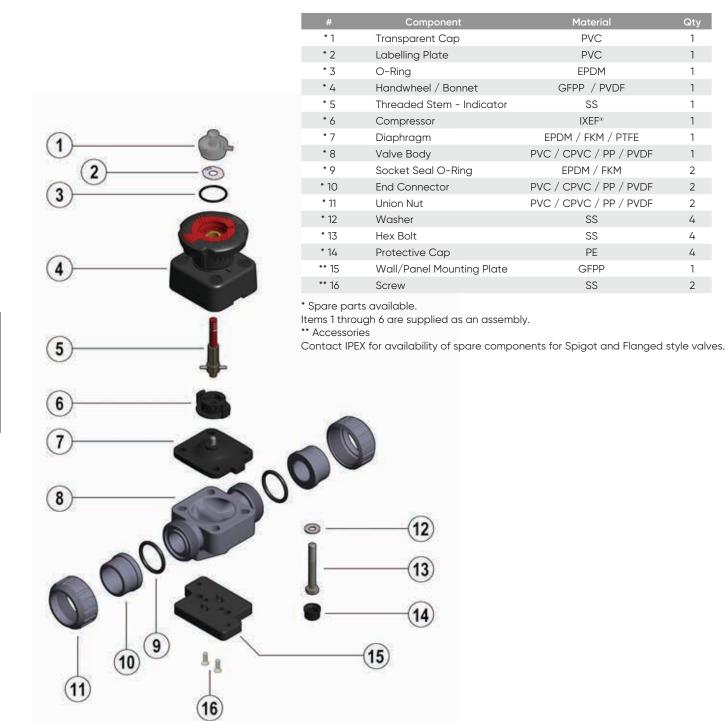

Dimension (inches)								
Size (in)	Size (mm)	А	В					
1/2	20	1.57	1.73					
3/4	25	1.57	1.73					
1	32	1.81	2.13					
1-1/4	40	1.81	2.13					
1-1/2	50	2.56	2.76					
2	63	3.07	3.23					
2-1/2	75	3.07	3.23					

Approximate Weight (lbs)

		PVC			CPVC		Р	P	P۱	/DF
Size	Spigot	True Union	Flanged	Spigot	True Union	Flanged	Spigot	True Union	Spigot	True Union
1/2	1.01	1.10	1.47	1.01	1.10	1.47	0.95	1.01	1.10	1.21
3/4	1.06	1.24	1.50	1.06	1.24	1.50	0.98	1.10	1.16	1.40
1	1.50	1.74	2.14	1.50	1.74	2.14	1.37	1.53	1.67	2.00
1-1/4	1.60	2.02	2.61	1.60	2.02	2.61	1.43	1.72	1.80	2.37
1-1/2	3.36	3.83	4.63	3.36	3.83	4.63	3.04	3.36	3.75	4.38
2	5.27	6.14	6.96	5.27	6.14	6.96	4.71	5.31	5.94	7.13
2-1/2	5.55	-	7.98	5.55	-	7.98	4.91	_	6.33	-

Pressure - Temperature Ratings




Flow Coefficients

Size (in)	C_{v}
1/2	7.8
3/4	18.1
1	30.8
1-1/4	38.1
1-1/2	75.3
2	114.2
2-1/2	110.9

Pressure Loss Chart

Components

Installation Procedures

- 1. The valve may be installed in any position or direction.
- Please refer to the appropriate connection style subsection:
 - a. For spigot style, solvent cement each pipe onto the ends of the valve body. Ensure that excess solvent does not run into the body of the valve.
 - b. For true union style, remove the union nuts and slide them onto the pipe.
 - ii. For socket style, solvent cement the end connectors onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Ensure that excess solvent does not run into the body of the valve. Be sure to allow sufficient cure time before continuing with the valve installation.
 - ii. For threaded style, thread the end connectors onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods – Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
 - iii. Ensure that the socket o-rings are properly fitted in their grooves then carefully place the valve in the system between the two end connections.
 - iv. Tighten both union nuts. Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Over-tightening may damage the threads on the valve body and/or the union nut, and may even cause the union nut to crack.
 - c. For flanged style, join both flanges to the pipe flanges. For correct joining procedure, please refer to the section entitled, "Joining Methods – Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".

3. If anchoring is required, fix the valve to the supporting structure using the wall/panel mounting kit.

Locking Device

The DK valve is equipped with the Dialock® handwheel locking system that prevents the valve from being opened or closed.

The Dialock system can be engaged by simply lifting the handwheel (4) once the required valve position has been reached.

To release the operating mechanism, simply return the handwheel (4) to its previous position by pushing it downwards

Installation Procedures, continued

Stroke Limiter (optional)

The DKL version of the diaphragm valve is equipped with a handwheel stroke control system which allows the minimum and maximum flows to be preset and the diaphragm to be protected from excessive compression during closing.

The stroke limiter allows the valve stroke to be modified using the two independent adjusting screws, which determine the mechanical limits of the valve during opening and closing.

The valve is sold with the stroke limiters positioned such that they do not limit the opening or closing stroke.

To access and set the adjusting screws, remove the transparent cap on top of the bonnet.

Travel stop adjustment. Minimum flow rate or closed valve.

- Rotate the handwheel clockwise until the required minimum flow rate is reached or the valve is closed.
- 2. Screw in nut (D) as far as it will go and lock it in this position by tightening the locknut (E).

To deactivate the function of limiting the closing stroke, completely unscrew nuts (D and E). This way, the valve will fully close.

3. Re-assemble the transparent cap making sure that the seal o-ring remains properly seated.

Stroke limiter adjustment. Maximum flow rate

- 1. Rotate the handwheel counter-clockwise until the required maximum flow rate is reached.
- Rotate knob (F) counter-clockwise as far as the stop. The labelling plate indicates the direction of rotation of the handwheel required to obtain a higher or lower maximum flow rate.
 - If the opening stroke does not need to be limited, rotate the knob (F) clockwise a number of times. This way, the valve will fully open.
- 3. Re-assemble the transparent cap making sure that the seal O-Ring remains properly seated.

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the line. Be sure to depressurize and drain the valve and isolated branch.
- If necessary, detach the valve from the support structure by disassembling the wall/panel mounting kit attached to the bottom of the valve body (8).
- Please refer to the appropriate connection style subsection:
 - a. For spigot style, cut the pipe on either side of the valve and remove from the line.
 - For true union style, loosen both union nuts and drop the valve out of the line. If retaining the socket o-rings (9), take care that they are not lost when removing the valve from the line.
 - c. For flanged style, loosen each bolt holding the valve to the pipe flanges. Please refer to the section entitled, "Joining Methods Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" for a recommended bolt tightening pattern diagram. Follow the same pattern when disassembling the flanged joints then carefully remove the valve from the line.
- 4. Remove the protective caps (14), then loosen and remove the bolts (13) and washers (12) from the bottom of the valve body.
- 5. Separate the valve body (8) from the handwheel/bonnet (4).
- 6. Rotate the handwheel/bonnet (4) clockwise to free the threaded stem (5), compressor (6) and diaphragm (7).
- 7. Unscrew the diaphragm (7) and remove the compressor (6).
- 8. The valve components can now be checked for problems and/or replaced.

Note: It is not recommended to attempt to further disassemble the handwheel/bonnet assembly as it may cause irreversible damage to the components.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant.

Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

 Insert the compressor (6) on the threaded stem (5) aligning it correctly with the reference pin on the stem.

- 2. Screw the diaphragm (7) on the threaded stem (5).
- 3. Lubricate the threaded stem (5), insert it in the bonnet (4), and rotate the handwheel/bonnet counter-clockwise until the stem is fully engaged (5). Make sure that the compressor (6) and diaphragm are correctly aligned with the housing in the bonnet.
- 4. Fit the handwheel/bonnet (4) on the valve body (8) and tighten the bolts (13) and washers (12).
- Tighten the bolts (13) in an even (cross-like) pattern, ensuring that recommended tightening torque found on the instruction sheet is followed.
- 6. Replace the protection caps on the bolt heads (14).

Note: During assembly, it is advisable to lubricate the threaded stem. Mineral oils are not recommended for this task as they react aggressively with EPDM rubber.

Testing and Operation

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-overwater boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

IPEX DK Series Pneumatic Diaphragm Valves are the ideal solution for modulating flow and controlling dirty or abrasive fluids in a variety of applications. The modular nature of this valve results in many material, body style, and diaphragm options. The re-designed weir-style body has significantly improved the DK's flow rate compared to the old design and it facilitates precise linear flow regulation through the valve's full range of operation. This pneumatically actuated version provides automatic control with an extensive range of options and accessories.

VALVE AVAILABILITY

Body Material:	PVC, CPVC, PP, PVDF
Size Range:	1/2" through 2-1/2"
Pressure:	150 psi
Diaphragm:	EPDM, FKM or PTFE (EPDM backed)
Control Style:	Pneumatically Actuated (Double Acting, Normally Open, Normally Closed)
End Connections:	Spigot, True Union (Socket, Threaded) Flanged (ANSI 150)

ASTM D1784 ASTM D1785 ASTM D4101 ASTM D3222 ASTM D2464 ASTM D2466 ASTM D2467 ASTM F441 ASTM F437 ASTM F439 ASTM F1498

ISO 3609 ISO 10931

ANSI B16.5

Sample Specification

1.0 Diaphragm Valves - DK Pneumatic

1.1 Material

- The valve body, including end connectors and unions, shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.
- or The valve body, including end connectors and unions, shall be made of Corzan® CPVC compound which shall meet or exceed the requirements of cell classification 23447 according to ASTM D1784.
- or The valve body, including end connectors and unions, shall be made of stabilized PP homopolymer compound, also containing a RAL 7032 pigment, which shall meet or exceed the requirements of Type I Polypropylene according to ASTM D4101.
- or The valve body, including end connectors and unions, shall be made of virgin, non-regrind PVDF compound which shall meet or exceed the requirements of Table 1 according to ASTM D3222.
- The pneumatic valve bonnet assembly shall be made of high temperature, high strength, glass-filled polypropylene (GFPP).

1.2 Diaphragm

- The diaphragm shall be made of EPDM.
- or The diaphragm shall be made of FKM.
- or The diaphragm shall be made of PTFE (backed with EPDM).

2.0 Connections

2.1 Spigot Style

- The IPS spigot PVC end connectors shall conform to the dimensional standard ASTM D1785.
- or The IPS spigot CPVC end connectors shall conform to the dimensional standard ASTM F441.
- or The Metric spigot PP end connectors shall conform to the dimensional standard ISO 3609.
- or The Metric spigot PVDF end connectors shall conform to the dimensional standard ISO 10931.

2.2 Socket Style

- The IPS socket PVC end connectors shall conform to the dimensional standards ASTM D2466 and ASTM D2467.
- or The IPS socket CPVC end connectors shall conform to the dimensional standard ASTM F439.
- or The Metric socket PP end connectors shall conform to the dimensional standard ISO 3609.
- or The Metric socket PVDF end connectors shall conform to the dimensional standard ISO 10931.

2.3 Threaded Style

- The female NPT threaded PVC end connectors shall conform to the dimensional standards ASTM D2464, ASTM F1498, and ANSI B1.20.1.
- or The female NPT threaded CPVC end connectors shall conform to the dimensional standards ASTM F437, ASTM F1498, and ANSI B1.20.1.

2.4 Flanged Style

- The ANSI 150 flanged PVC end connectors shall conform to the dimensional standard ANSI B16.5.
- or The ANSI 150 flanged CPVC end connectors shall conform to the dimensional standard ANSI B16.5.
- or The ANSI 150 flanged PP end connectors shall conform to the dimensional standard ANSI B16.5.
- or The ANSI 150 flanged PVDF end connectors shall conform to the dimensional standard ANSI B16.5.

Sample Specification, continued

3.0 Design Features

- · All valves shall be weir-style for throttling applications.
- 1/2" and 3/4" valves shall have a standard optical position indicator to allow for a visual check of the valve position.
- 1/2" and 3/4" valves shall have a custom labelling plate housed in a transparent cap.
- · All through bolts shall be made of stainless steel.
- The valve shall incorporate a feature that allows an identification tag to be easily affixed to the valve body.
- Bodies of PVC, CPVC and PP valves shall have brass mounting inserts.
- Bodies PVDF valves shall have stainless steel mounting inserts.

3.1 Actuators

- All actuators shall be made of high strength glass-filled polypropylene (GFPP).
- Actuators shall be piston style.
- Actuators shall have 6 independent cartridge springs arranged radially to uniformly distribute the load on the piston.
- The following accessories shall be available for all actuators: position indicator, stroke limiter, stroke limiter with position indicator, limit switch, limit switch box, 3-15 psi positioner, 4-20 mA positioner, pilot solenoid valve.

3.2 Pressure Rating

All valves shall be rated at 150 psi at 73°F.

3.3 Markings

 All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.4 Color Coding

- All PVC valves shall be color-coded dark gray.
- or All CPVC valves shall be color-coded light gray.
- or All PP valves shall be color-coded beige gray.
- or All PVDF valves shall not be color-coded and be white in appearance.
- All bonnet assemblies shall be color-coded black.
- **4.0** All valves shall be Xirtec® PVC, Xirtec® CPVC, PP or PVDF by IPEX or approved equal.

Valve Selection – Double Acting

	-		-	IPEX Po	art Number		D	Во	dy Material:		
Valve Size	Body	Diaphragm		Double Act	ing True Unic	n	Pressure Rating		PVC		
(inches)	Material	Material	IPS	IPS	FNP	ANSI 150	@ 73°F		CPVC		
		EDDM	Spigot	Socket	Threaded	Flanged		ш	CFVC		
	PVC	EPDM FKM	354040 354042	354052 354054	354058 354060	354076 354078					
1/2		PTFE	354044	354054	354062	354078					
		EPDM	354082	354094	354100	354118		Siz	e (inches):		
	CPVC	FKM	354084	354096	354102	354120			1/2 🗆 1-1/2		
		PTFE	354086	354098	354104	354122			3/4 □ 2		
		EPDM	354041	354053	354059	354077			1 🗆 2-1/2		
	PVC	FKM	354043	354055	354061	354079			1-1/4		
7//		PTFE	354045	354057	354063	354081					
3/4		EPDM	354083	354095	354101	354119					
	CPVC	FKM	354085	354097	354103	354121					
	0 0	PTFE	354087	354099	354105	354123		Dic	aphragm:		
		EPDM	354417	354661	354418	354733		Dic	apınagın.		
	PVC	FKM	354580	354697	354436	354777			EPDM		
		PTFE	354624	354715	354472	354796			FKM		
1 -		EPDM	354815	354896	354490	354908	Co	PTFE (EPDM Backed)			
	CPVC	FKM	354853	354900	354508	354913					
		PTFE	354891	354904	354544	354918					
	PVC	EPDM	354562	354669	354426	354741		Co	ntrol Style:		
		FKM	354606	354705	354462	354778		CO	ittor Style.		
11//		PTFE	354625	354723	354480	354797	1FO mai		Pneumatic (Double Acting)		
1-1/4	CPVC	EPDM	354818	354897	354498	354909	150 psi		Pneumatic (Normally Open)		
		FKM	354861	354901	354534	354914	□ En		Pneumatic (Normally Closed)		
		PTFE	354892	354905	354552	354919					
	PVC	EPDM	354570	354670	354427	354742					
		FKM	354607	354706	354463	354779					
1-1/2		PTFE	354651	354724	354481	354805		En	d Connections:		
1-1/2		EPDM	354843	354898	354499	354910			d Connections.		
	CPVC	FKM	354862	354902	354535	354915			Spigot (IPS)		
		PTFE	354893	354906	354553	354920			True Union (IPS Socket)		
		EPDM	354571	354696	354435	354768			True Union (FNPT Threaded)		
	PVC	FKM	354615	354714	354471	354787			Flanged (ANSI 150)		
2		PTFE	354652	354732	354489	354806					
2		EPDM	354844	354899	354507	354911					
	CPVC	FKM	354889	354903	354543	354916		IDE	X Part Number:		
		PTFE	354894	354907	354561	354921		IPE	A Part Number.		
		EPDM	354579	-	-	354769					
	PVC	FKM	354616	-	-	354788					
2-1/2		PTFE	354660	_	_	354814					
- 1/ -		EPDM	354852	-	-	354912					
	CPVC	FKM	354890	-	-	354917					
		PTFE	354895	-	-	354922					

Valve Selection – Double Acting

	IPEX Part Number Pressure					Body Material:	
Valve Size	Body	Diaphragm	Double Actin	ng True Union	Rating	□ PP	
(mm)	Material	Material		Metric Socket	@ 73°F	□ PVDF	
		EPDM	354124	354130			
	PP	FKM	354126	354132			
20		PTFE	354128	354134		Size (inches):	
20		EPDM	354172	354883		Size (inches):	
	PVDF	FKM	354174	354885		□ 20mm □ 50mm	
		PTFE	354881	354887		□ 25mm □ 63mm	
		EPDM	354125	354131		□ 32mm □ 75mm	
	PP	FKM	354127	354133		□ 40mm	
25		PTFE	354129	354135		□ 40mm	
23		EPDM	354173	354884			
	PVDF	FKM	354880	354886			
		PTFE	354882	354888			
		EPDM	354923	354938		D: 1	
	PP	FKM	354928	354942		Diaphragm:	
32		PTFE	354933	354946		□ EPDM	
32	PVDF	EPDM	354950	354965	_	□ FKM	
		FKM	354955	354969			
		PTFE	354960	354973		□ PTFE (EPDM Backed)	
	PP	EPDM	354924	354939			
		FKM	354929	354943			
40 -		PTFE	354934	354947	150 psi	Company Studen	
10	PVDF	EPDM	354951	354966		Control Style:	
		FKM	354956	354970		☐ Pneumatic (Double Acting)	
		PTFE	354961	354974		☐ Pneumatic (Normally Open)	
		EPDM	354925	354940			
	PP	FKM	354930	354944		□ Pneumatic (Normally Closed)	
50 -		PTFE	354935	354948			
	5, 45.5	EPDM	354952	354967			
	PVDF	FKM	354957	354971			
		PTFE	354962	354975		Fral Commontions	
	55	EPDM	354926	354941		End Connections:	
	PP	FKM	354931	354945		☐ Spigot	
63 -		PTFE	354936	354949		☐ True Union (Metric Socket)	
	ם יים	EPDM	354953	354968		☐ True Officia (Metric Socket)	
	PVDF	FKM	354958	354972			
		PTFE	354963	354976			
	PP	EPDM FKM	354927 354932	-			
	FF			_		IDEV Dout Name on	
75 -		PTFE	354937			IPEX Part Number:	
	חעייי	EPDM	354954	-			
	PVDF	FKM	354959	_			
		PTFE	354964	-			

Valve Selection – Normally Open

				IPEX Par	t Number			Во	dy Material:	
Size	Dody	Diambuaam	N		en True Unic	on	Pressure		PVC	
(in)	Body Material	Diaphragm Material	IPS	IPS	FNPT	ANSI 150	Rating		CPVC	
			Spigot	Socket	Threaded	Flanged	@ 73°F			
		EPDM	354410	354437	354046	354455				
	PVC	FKM	354419	354443	354048	354464		Siz	e (inches):	
- /-		PTFE	354428	354449	354050	354473				
1/2	•••••	EPDM	354482	354509	354088	354527	[1/2 🔲 1-1/2	
	CPVC	FKM	354491	354515	354090	354536			3/4 🗆 2	
		PTFE	354500	354521	354092	354545			1	
		EPDM	354411	354438	354047	354456			1-1/4	
	PVC	FKM	354420	354444	354049	354465				
7//		PTFE	354429	354450	354051	354474	_			
3/4		EPDM	354483	354510	354089	354528				
	CPVC	FKM	354492	354516	354091	354537		Die	aphragm:	
		PTFE	354501	354522	354093	354546				
		EPDM	354003	354439	354064	354457			EPDM	
	PVC	FKM	354421	354445	354068	354466			FKM	
1		PTFE	354430	354451	354072	354475	,		PTFE (EPDM Backed)	
1		EPDM	354484	354511	354106	354529				
	CPVC	FKM	354493	354517	354110	354538				
		PTFE	354502	354523	354114	354547		Control Style:	ntrol Style:	
		EPDM	354413	354440	354065	354458			Pneumatic (Double Acting)	
	PVC	FKM	354422	354446	354069	354467				
1-1/4		PTFE	354431	354452	354073	354476	. 1EO poi			
1-1/4	CPVC	EPDM	354485	354512	354107	354530	150 psi		Pneumatic (Normally Closed)	
		FKM	354494	354518	354111	354539				
		PTFE	354503	354524	354115	354548				
		EPDM	354414	354441	354066	354459		_		
	PVC	FKM	354423	354447	354070	354468		En	d Connections:	
1-1/2		PTFE	354432	354453	354074	354477	□ Spigot (IPS)	Spigot (IPS)		
,		EPDM	354486	354513	354108	354531			True Union (IPS Socket)	
	CPVC	FKM	354495	354519	354112	354540			True Union (FNPT Threaded)	
		PTFE	354504	354525	354116	354549			Flanged (ANSI 150)	
	5). (0	EPDM	354415	354442	354067	354460				
	PVC	FKM	354424	354448	354071	354469				
2		PTFE	354433	354454	354075	354478	ſ	IDE	EX Part Number:	
		EPDM	354487	354514	354109	354532		IFL	A Fait Namber.	
	CPVC	FKM	354496	354520	354113	354541				
		PTFE	354505	354526	354117	354550				
		EPDM	354416	-	-	354461				
	PVC	FKM	354425	-	-	354470				
2-1/2		PTFE	354434		-	354479	ſ			
-, -		EPDM	354488	-	-	354533				
	CPVC	FKM	354497	-	-	354542				
		PTFE	354506	-	-	354551				

DIAPHRAGM VALVES

DK SERIES PNEUMATIC DIAPHRAGM VALVES

Valve Selection – Normally Open

PVDF

FKM

PTFE

354614

354623

_	_	_	Product	t Code		Body Material:
Valve	Body	Diaphragm	Normally Ope		Pressure	•
Size (mm)	Material	Material	Metric	Metric	Rating @ 73°F	□ PP
(111111)			Spigot	Socket	@ /3 1	□ PVDF
		EPDM	354554	354581		
	PP	FKM	354563	354587		
20		PTFE	354572	354593		Size (inches):
20		EPDM	354599	354582		□ 20mm □ 50mm
	PVDF	FKM	354608	354588		□ 25mm □ 63mm
		PTFE	354617	354594		□ 32mm □ 75mm
		EPDM	354555	354626		□ 40mm
	PP	FKM	354564	354632		L 40/////
25		PTFE	354573	354638		
25		EPDM	354600	354627		
	PVDF	FKM	354609	354633		
		PTFE	354618	354639		Diaphragm:
		EPDM	354556	354583		□ EPDM
	PP	FKM	354565	354589		□ FKM
32		PTFE	354574	354595		□ PTFE (EPDM Backed)
		EPDM	354601	354584		D FIFE (EPDIVI BUCKEU)
	PVDF	FKM	354610	354590		
		PTFE	354619	354596		
		EPDM	354557	354585		Control Style:
	PP	FKM	354566	354628		☐ Pneumatic (Double Acting)
40		PTFE	354575	354634	150 psi	_
10		EPDM	354602	354640	100 poi	, , , , , , , , , , , , , , , , , , , ,
	PVDF	FKM	354611	354629		☐ Pneumatic (Normally Closed)
		PTFE	354620	354635		
		EPDM	354558	354641		
	PP	FKM	354567	354630		
50		PTFE	354576	354591	NT	End Connections:
		EPDM	354603	354597		☐ Spigot
	PVDF	FKM	354612	354586		☐ True Union (Metric Socket)
		PTFE	354621	354592		I True official (Fieldie Gooker)
		EPDM	354559	354598		
	PP	FKM	354568	354636		
63		PTFE	354577	354642		
		EPDM	354604	354631		IPEX Part Number:
	PVDF	FKM	354613	354637		
		PTFE	354622	354643	II.	
		EPDM	354560	-		
	PP	FKM	354569	-		
75		PTFE	354578	-		
		EPDM	354605	-		

Valve Selection – Normally Closed

	_	_	_	Produc	t Code	_	Duessins	Body Material:	
Size	Body	Diaphragm		ormally Clos	ed True Unic	n	Pressure Rating	□ PVC	
(in)	Material	Material	IPS	IPS	FNPT	ANSI 150	@ 73°F		
			Spigot	Socket	Threaded	Flanged		□ CPVC	
	51.40	EPDM	354644	354671	354136	354689			
	PVC	FKM	354653	354677	354142	354698			
1/2		PTFE	354662	354683	354148	354707	Siz	Size (inches):	
	0.001/0	EPDM	354716	354743	354154	354761			
	CPVC	FKM	354725	354749	354160	354770		□ 1/2 □ 1-1/2	
		PTFE	354734	354755	354166	354780		□ 3/4 □ 2	
		EPDM	354645	354672	354137	354690		□ 1 □ 2-1/2	
	PVC	FKM	354654	354678	354143	354699		□ 1-1/4	
3/4		PTFE	354663	354684	354149	354708	ſ		
-,		EPDM	354717	354744	354155	354762			
	CPVC	FKM	354726	354750	354161	354771			
		PTFE	354735	354756	354167	354781			
		EPDM	354646	354673	354138	354691		Diaphragm:	
	PVC	FKM	354655	354679	354144	354700			
1		PTFE	354664	354685	354150	354709	ſ	□ EPDM	
		EPDM	354718	354745	354156	354763		□ FKM	
	CPVC	FKM	354727	354751	354162	354772		□ PTFE (EPDM Backed)	
		PTFE	354736	354757	354168	354782			
		EPDM	354647	354674	354139	354692			
	PVC	FKM	354656	354680	354145	354701	_		
1-1/4		PTFE	354665	354686	354151	354710	150 psi	Control Style:	
,		EPDM	354719	354746	354157	354764		Danimetic (Davids Asting)	
	CPVC	FKM	354728	354752	354163	354773		, , , , , , , , , , , , , , , , , , , ,	
		PTFE	354737	354758	354169	354783		□ Pneumatic (Normally Open)	
		EPDM	354648	354675	354140	354693		□ Pneumatic (Normally Closed)	
	PVC	FKM	354657	354681	354146	354702			
1-1/2		PTFE	354666	354687	354152	354711	ſ		
,		EPDM	354720	354747	354158	354765			
	CPVC	FKM	354729	354753	354164	354774		5 10 ···	
		PTFE	354738	354759	354170	354784		End Connections:	
		EPDM	354649	354676	354141	354694		□ Spigot (IPS)	
	PVC	FKM	354658	354682	354147	354703		☐ True Union (IPS Socket)	
2		PTFE	354667	354688	354153	354712	ſ		
_		EPDM	354721	354748	354159	354766		☐ True Union (FNPT Threaded)	
	CPVC	FKM	354730	354754	354165	354775		□ Flanged (ANSI 150)	
		PTFE	354739	354760	354171	354785			
		EPDM	354650	-	-	354695			
	PVC	FKM	354659	-	-	354704		IDEV Doort Normale	
2-1/2		PTFE	354668	_		354713	r	IPEX Part Number:	
2 1/2		EPDM	354722	-	-	354767			
	CPVC	FKM	354731	-	-	354776			
	PTFE	354740	-	-	354786				

Valve Selection – Normally Closed

Valve Size	Body	Diaphragm		t Code ed Ture Union	Pressure	Body Material:		
(mm)	Material	Material		Metric Socket	Rating @ 73°F	□ PP □ PVDF		
	PP	EPDM FKM	354789 354798	354816 354824				
20		PTFE EPDM	354807 354836	354830 354863		Size (inches):		
	PVDF	FKM PTFE	354845 354854	354868 354874		□ 20mm □ 50mm □ 63mm		
	PP	EPDM FKM PTFE	354790 354799 354808	354819 354825 354831		□ 32mm □ 75mm □ 40mm		
25 ···	PVDF	EPDM FKM PTFE	354837 354846 354855	354864 354869 354875				
	PP	EPDM FKM	354791 354800	354820 354826		Diaphragm:		
32	PVDF	PTFE EPDM FKM	354809 354838 354847	354832 354817 354870		□ EPDM□ FKM□ PTFE (EPDM Backed)		
	PP	PTFE EPDM FKM	354856 354792 354801	354876 354821 354827				
40	PVDF	PTFE EPDM FKM	354810 354839 354848	354833 354865 354871	150 psi	Control Style: Pneumatic (Double Acting)		
	PP	PTFE EPDM FKM	354857 354793 354802	354877 354822 354828		□ Pneumatic (Normally Open)□ Pneumatic (Normally Closed)		
50	PVDF	PTFE EPDM FKM	354811 354840 354849	354834 354866 354872				
	DD	PTFE EPDM	354858 354794	354878 354823		End Connections: □ Spigot		
63	PP	FKM PTFE EPDM	354803 354812 354841	354829 354835 354867		☐ True Union (Metric Socket)		
	PVDF	FKM PTFE	354850 354859	354873 354879				
75 ··	PP	EPDM FKM PTFE	354795 354804 354813	- - -		IPEX Part Number:		
/5	PVDF	EPDM FKM PTFE	354842 354851 354860	- - -				

Options and Accessories

Electrical Position Indicator, 1 Mechanical Switch

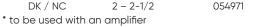
Valve	Dimension (in)	IPEX Part Number
DK / NC	1/2 - 3/4	154472
DK / NC	1 – 1-1/4	054953
DK / NC	1-1/2	054954
DK / NC	2 - 2-1/2	054955

Optico	Optical Position Indicator								
Valve	Dimension (in)	IPEX Part Numbe							
DK / DA-NO-NC	1 – 2–1/2	054997							

	Stroke Limiter	
Valve	Dimension (in)	IPEX Part Number
DK / DA-NO	1/2 - 2-1/2	054994
DK / NC	1 - 1-1/2	054991
DK / NC	2 - 2-1/2	054992

2 Electromechanical Switches (IP 65) DK / NO-DA 1/2 - 3/4154474 DK / NC 1/2 - 3/4154473 DK / NO-DA 1 - 21/2054969 DK / NC 1 - 11/2054967 DK / NC 2 - 21/2054968

Microswitch Box,



Stroke Limiter w/ Position Indicator Velva Dimension (in) IPEX Part										
Valve	Dimension (in)	Number								
DK / DA-NO-NC	1/2 - 3/4	154470								
DK / DA-NO	1 – 2–1/2	053066								
DK / NC	1 - 1-1/4	054999								
DK / NC	1-1/2	053063								
DK / NC	2 - 2-1/2	053064								

Microswitch Box, 2 Inductive Switches (IP 65, NAMUR*, SAFETY CLASS: Eex ia IIC T6)

Valve	Dimension (in)	IPEX Part Number
DK / NO-DA	1/2 - 3/4	154477
DK / NC	1/2 - 3/4	154476
DK / NO-DA	1 - 2-1/2	054972
DK / NC	1 – 1-1/2	054970
DK / NC	2 - 2-1/2	054971

and Manual Override										
Valve	Dimension (in)	IPEX Part Number								
DK / DA-NO-NC	1/2 - 3/4	154471								
DK / DA-NO*	1 - 1-1/4	053072								
DK / DA-NO*	1-1/2 - 2-1/2	053073								
DK / NC*	1 - 1-1/4	053069								
DK / NC*	1-1/2 - 2-1/2	053071								

Stroke Limiter w/ Position Indicator

Valve	Style	Voltage	Mount, NBR Seals Dimension (in)	IPEX Part Number
DK / DA-NO-NC	3/2 Way	24 VDC	1/2 - 21/2	154036
DK / DA-NO-NC	3/2 Way	110 VAC	1/2 - 21/2	053074
DK / DA-NO-NC	3-5/2 Way	24 VDC	1/2 – 3/4	154485
DK / DA-NO-NC	3-5/2 Way	110 VAC	1/2 – 3/4	154486
NAMUR Adapter Plate	-	-	1/2 - 3/4	154484

Valve	Style	Voltage	Dimension (in)	IPEX Part Number
DK / DA-NO-NC	3/2 Way	24 VDC	1/2 – 2-1/2	154483
DK / DA-NO-NC	3/2 Way	110 VAC	1/2 – 2-1/2	053076

^{*} factory assembled

Dimensions - 1/2" to 2-1/2"

IPS Spigot Connections - Double Acting, Normally Open, Normally Closed

Dimension (inches)

	Differ Sion (inches)											
ı	Size	PVC/ CPVC d(in)	PP/ PVDF d(mm)	В	B ₁	С	C ₁	н	Н	L	Ra	
	1/2	0.84	20	5.83	0.98	2.60	0.94	4.88	3.82	0.63	1/4	
	3/4	1.05	25	5.94	1.16	2.72	0.94	5.67	3.82	0.75	1/4	
	1	1.32	32	6.26	1.30	3.07	0.94	6.06	3.82	0.87	1/4	
	1-1/4	1.66	40	6.42	1.18	3.23	0.94	6.85	3.82	1.02	1/4	
	1-1/2	1.90	50	8.15	1.38	4.41	0.94	7.64	4.96	1.22	1/4	
	2	2.38	63	9.65	1.81	5.59	0.94	8.82	6.18	1.50	1/4	
	2-1/2	2.88	75	9.65	1.81	5.59	0.94	11.18	6.18	1.73	1/4	

IPS Socket Connections - Double Acting, Normally Open, Normally Closed

	Dimension (inches)														
Size	PVC/ CPVC d(in)	PP/ PVDF d(mm)	В	Bı	С	C ₁	E	H (PVC/ CPVC)	H (PP/ PVDF)	Н	LA	R ₁	Ra	Z (PVC/ CPVC)	Z (PP/ PVDF)
1/2	0.84	20	5.83	0.98	2.60	0.94	1.61	5.63	5.08	3.82	3.54	1	1/4	3.86	3.94
3/4	1.05	25	5.94	1.16	2.72	0.94	1.97	6.57	6.06	3.82	4.25	1-1/4	1/4	4.53	4.57
1	1.32	32	6.26	1.30	3.07	0.94	2.28	7.09	6.61	3.82	4.57	1-1/2	1/4	4.8	4.88
1-1/4	1.66	40	6.42	1.18	3.23	0.94	2.83	8.19	7.56	3.82	5.28	2.00	1/4	5.67	5.51
1-1/2	1.90	50	8.15	1.38	4.41	0.94	3.11	9.21	8.74	4.96	6.06	2-1/4	1/4	6.46	6.30
2	2.38	63	9.65	1.81	5.59	0.94	3.86	10.71	10.47	6.18	7.24	2-3/4	1/4	7.68	7.48

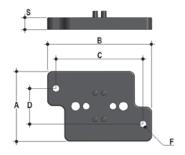
FNPT Threaded Connections – Double Acting, Normally Open, Normally Closed

Dimension (inches)

	Differsion (inches)											
R	В	B ₁	С	C ₁	E	Н	Нı	LA	R ₁	Ra	Z	
1/2	5.83	0.98	2.60	0.94	1.61	5.16	3.82	3.54	1	1/4	3.82	
3/4	5.94	1.18	2.72	0.94	1.97	5.94	3.82	4.25	1-1/4	1/4	4.65	
1	6.26	1.30	3.07	0.94	2.28	6.50	3.82	4.57	1-1/2	1/4	5.00	
1-1/4	6.42	1.18	3.23	0.94	2.83	7.40	3.82	5.28	2	1/4	5.71	
1-1/2	8.15	1.38	4.41	0.94	3.11	8.19	4.96	6.06	2-1/4	1/4	6.50	
2	9.65	1.81	5.59	0.94	3.86	9.69	6.18	7.24	2-3/4	1/4	7.68	

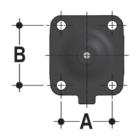

ANSI 150 Flanged (Vanstone) Connections – Double Acting, Normally Open, Normally Closed

Dimension (inches)



Size	В	B ₁	С	C1	f	Н	H ₁	Ra	Sp	# holes
1/2	5.83	0.98	2.60	0.94	5/8	4.25	3.82	1/4	0.53	4
3/4	5.94	1.18	2.72	0.94	5/8	5.91	3.82	1/4	0.53	4
1	6.26	1.30	3.07	0.94	5/8	6.30	3.82	1/4	0.53	4
1-1/4	6.42	1.18	3.23	0.94	5/8	7.09	3.82	1/4	0.55	4
1-1/2	8.15	1.38	4.41	0.94	5/8	7.87	4.96	1/4	0.63	4
2	9.65	1.81	5.59	0.94	3/4	9.06	6.18	1/4	0.63	4
2-1/2	9.65	1.81	5.59	0.94	3/4	11.42	6.18	1/4	0.83	4

Dimensions

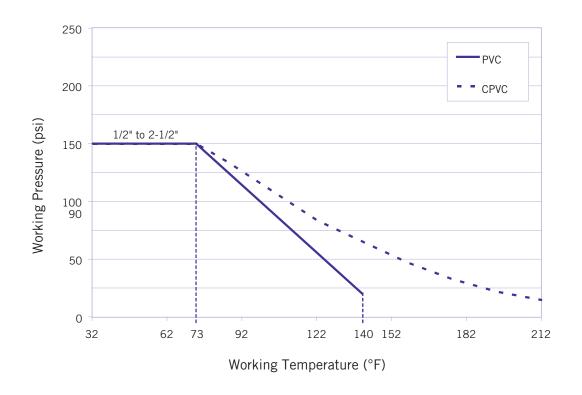


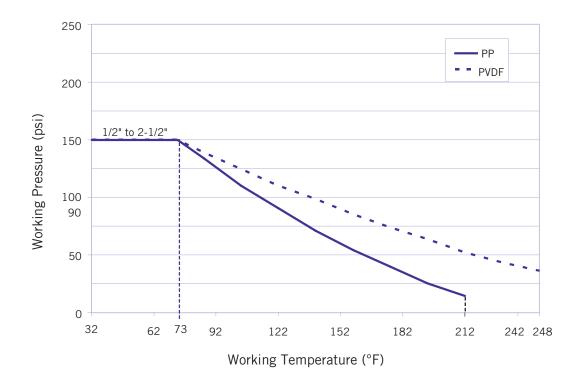
Dimension (inches)						
Size	Α	L	J			
1/2	2.91	0.98	M6 x 10			
3/4	2.91	0.98	M6 x 10			
1	3.43	0.98	M6 x 10			
1-1/4	3.43	0.98	M6 x 10			
1-1/2	4.49	1.75	M8 x 14			
2	5.35	1.75	M8 x 14			
2-1/2	5.35	1.75	M8 x 14			

Wall/Panel Mounting Plate

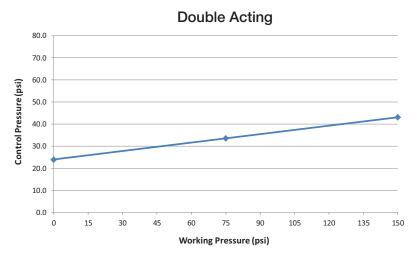
		Dimensi	ons (inche	es)		
Size	Α	В	С	D	F	S
1/2	2.56	3.82	3.19	1.30	0.22	0.43
3/4	2.56	3.82	3.19	1.30	0.22	0.43
1	2.56	3.82	3.19	1.30	0.22	0.43
1-1/4	2.56	3.82	3.19	1.30	0.22	0.43
1-1/2	2.56	5.67	5.12	1.30	0.26	0.43
2	2.56	5.67	5.12	1.30	0.26	0.43
2-1/2	2.56	5.67	5.12	1.30	0.26	0.43

Diaphragm


н	o: (:)	a: / \		
J	Size (in)	Size (mm)	Α	В
	1/2	20	1.57	1.73
	3/4	25	1.57	1.73
	1	32	1.81	2.13
	1-1/4	40	1.81	2.13
	1-1/2	50	2.56	2.76
	2	63	3.07	3.23
	2-1/2	75	3.07	3.23


Weights

Approximate Weight (lbs)

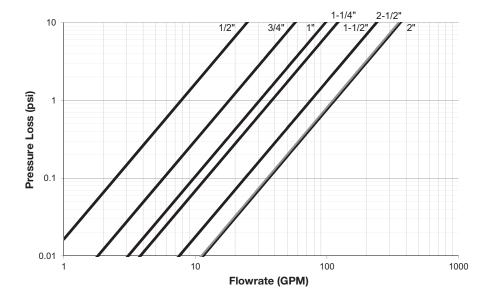

Size		/C / CI Spigo		PVC	/ CPV0 Union	C True		/C / CF Flange		:	PP Spigo	t	Tı	PP rue Un	ion		PVDF Spigot			PVDF e Unic	on
	DA	NO	NC	DA	NO	NC	DA	NO	NC	DA	NO	NC	DA	NO	NC	DA	NO	NC	DA	NO	NC
1/2	1.27	1.53	1.53	1.36	1.62	1.62	1.77	2.04	2.04	1.20	1.47	1.47	1.25	1.52	1.52	1.35	1.61	1.61	1.47	1.73	1.73
3/4	1.32	1.58	1.58	1.49	1.76	1.76	1.93	2.22	2.22	1.23	1.50	1.50	1.36	1.62	1.62	1.42	1.68	1.68	1.66	1.92	1.92
1	1.76	2.02	2.02	2.00	2.26	2.26	2.54	2.80	2.80	1.62	1.88	1.88	1.79	2.05	2.05	1.92	2.18	2.18	2.25	2.51	2.51
1-1/4	1.85	2.12	2.12	2.27	2.54	2.54	2.98	3.22	3.22	1.69	1.95	1.95	1.98	2.24	2.24	2.05	2.32	2.32	2.63	2.89	2.89
1-1/2	4.41	4.94	5.96	4.89	6.44	6.44	5.81	6.34	7.35	4.06	4.59	5.60	4.43	4.96	5.98	4.76	5.30	6.31	5.38	5.91	6.93
2	8.15	9.12	13.05	9.00	13.90	13.90	9.81	10.78	14.71	7.89	8.86	12.79	8.18	9.14	13.07	9.12	10.09	14.01	10.25	11.22	15.15
2-1/2	8.53	9.50	13.43	_	_	-	11.14	12.10	16.03	8.22	9.19	13.12	_	_	_	9.65	10.61	14.54	_	_	_

Pressure - Temperature Ratings

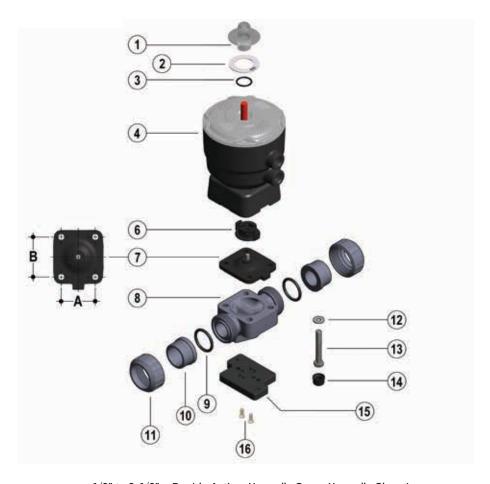


Control Pressure - 1/2" to 2-1/2"

* Maximum Control Pressure - 75 psi



* Maximum Control Pressure - 100 psi


Flow Coefficients

Size (in)	C _v
1/2	7.8
3/4	18.1
1	30.8
1-1/4	38.1
1-1/2	75.3
2	114.2
2-1/2	110.9

Pressure Loss Chart

Components

 $1/2\hbox{\ensuremath{^{\prime\prime}}}$ to 2-1/2 $\hskip-0.05cm$ – Double Acting, Normally Open, Normally Closed

#	Component	Material	Qty
* 1	Transparent Cap	PVC	1
* 2	Labelling Plate	PVC	1
* 3	O-Ring	EPDM	1
* 4	Actuator, DA/NO/NC	GFPP	1
* 6	Compressor	IXEF®	1
* 7	Diaphragm	EPDM / FKM / PTFE	1
* 8	Valve Body	PVC / CPVC / PP / PVDF	1
* 9	Socket Seal O-Ring	EPDM / FKM	2
* 10	End Connector	PVC / CPVC / PP / PVDF	2
* 11	Union Nut	PVC / CPVC / PP / PVDF	2
* 12	Washer	SS	4
* 13	Hex Bolt	SS	4
* 14	Protective Cap	PE	4
** 15	Wall/Panel Mounting Plate	GFPP	1
** 16	Screw	SS	2

^{*} Spare parts available.

Items 1 through 6 are supplied as an assembly

Contact IPEX for availability of spare components for Spigot and Flanged style valves.

^{**} Accessories

Installation Procedures

- 1. The valve may be installed in any position or direction.
- 2. Please refer to the appropriate connection style subsection:
 - a. For spigot style, solvent cement each pipe onto the ends of the valve body. Ensure that excess solvent does not run into the body of the valve.
 - b. For true union style, remove the union nuts and slide them onto the pipe.
 - i. For socket style, solvent cement the end connectors onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Ensure that excess solvent does not run into the body of the valve. Be sure to allow sufficient cure time before continuing with the valve installation.
 - ii. For threaded style, thread the end connectors onto the pipe ends.
 For correct joining procedure, please refer to the section entitled,
 "Joining Methods Threading" in the IPEX Industrial Technical
 Manual Series, "Volume I: Vinyl Process Piping Systems".
 - iii. Ensure that the socket o-rings are properly fitted in their grooves then carefully place the valve in the system between the two end connections.
 - iv. Tighten both union nuts. Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Overtightening may damage the threads on the valve body and/or the union nut, and may even cause the union nut to crack.
 - c. For flanged style, join both flanges to the pipe flanges. For correct joining procedure, please refer to the section entitled, "Joining Methods Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
- 3. If anchoring is required, fix the valve to the supporting structure using the wall/panel mounting kit.
- 4. Connect any accessories then a suitable air supply and pilot system to the actuator. Be sure to check that both the working and control pressure are in accordance with the specifications.

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the line. Be sure to depressurize and drain the valve and isolated branch. Depressurize and disconnect the pneumatic control line before continuing with disassembly.
- 2. If necessary, detach the valve from the support structure by disassembling the wall/panel mounting kit attached to the bottom of the valve body (8).
- 3. Please refer to the appropriate connection style subsection:
 - For spigot style, cut the pipe on either side of the valve and remove from the line.
 - b. For true union style, loosen both union nuts and drop the valve out of the line. If retaining the socket o-rings (9), take care that they are not lost when removing the valve from the line.
 - c. For flanged style, loosen each bolt holding the valve to the pipe flanges. Please refer to the section entitled, "Joining Methods - Flanging" in the IPEX Industrial Technical Manual Series. "Volume I: Vinyl Process Piping Systems" for a recommended bolt tightening pattern diagram. Follow the same pattern when disassembling the flanged joints then carefully remove the valve from the line.
- Remove the protective caps (14), then loosen and remove the bolts (13) and washers (12) from the bottom of the valve body.
- Separate the valve body (8) from the actuator (1 or 4).
- Unscrew the diaphragm (7) and remove the 6. compressor (6).
- The valve components can now be checked for problems and/or replaced.

Note: All operations on equipment under pressure or containing compressed springs must be carried out under safe conditions for the operator. For safety reasons, it is not recommended to attempt to disassemble the actuator.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble

Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- Insert the compressor (6) on the actuator stem (1 or 4) aligning it correctly in its housing.
- Screw the diaphragm (7) on the stem, aligning it correctly with its housing on the actuator.
- 3. Mount the actuator (1 or 4) on the valve body (8) and tighten the bolts (13) and washers (12).
- 4. Tighten the bolts (13) in an even (cross-like) pattern, ensuring that recommended tightening torque found on the instruction sheet is followed.
- Replace the protection caps on the bolt heads (14).
- Reconnect the valve to the pneumatic and electrical connections.

Note: All operations on equipment under pressure or containing compressed springs must be carried out under safe conditions for the operator. For safety reasons, it is not recommended to attempt to disassemble the actuator.

Testing and Operation

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-overwater boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

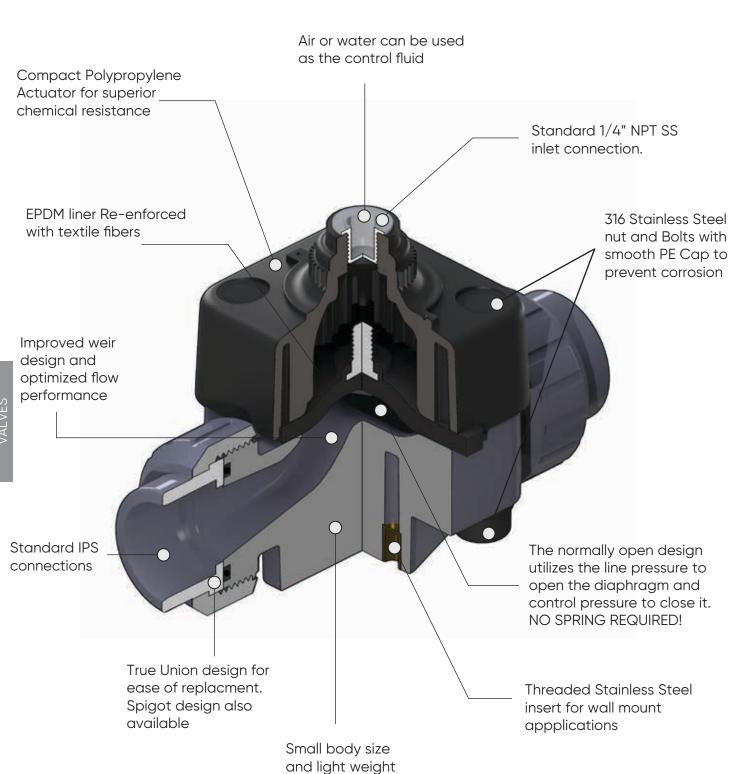
Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

NOTES

IPEX DKD Series Diaphragm Valves are ultra-compact, direct acting pneumatic valves. The DKD diaphragm valve is suitable for shutting off very dirty and highly viscous fluids. The internal geometry of the body optimizes fluid dynamic efficiency by increasing the flow rate. The valve is comprised of three elements: the body, diaphragm and sealing bonnet. When compressed air enters the bonnet, the diaphragm is pressed against the body's weir, interrupting the flow. This simplified operating principle and the lower number of components guarantees high reliability and durability. The DKD Series Diaphragm Valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance and dimensional standards.

VALVE AVAILABILITY

Body Material	PVC
Size Range	1/2" through 2"
Pressure	120 psi
Diaphragm	EPDM
Control Style	Direct Acting Pneumatic
End Connections	Spigot, True Union



ASTM D1784 ASTM D1785 ASTM D2466 ASTM D2467 ASTM D2464 ASTM F1498

ANSI B1.20.1 ANSI B16.5

Features & Benefits

Valve Selection

Pressure Rating @ 73oF Significant Number IPEX Body Part Number Material DKUV103D 354255 1/2" DKUV104D 354263 3/4" DKUV105D 1" Direct 354264 True PVC **EPDM** 120 PSI Acting Union DKUV106D 354272 11/4" Pneumatic DKUV107D 354273 11/2" DKUV108D 354299 2" DKYV103D 354183 1/2" DKYV104D 354191 3/4" 354182 DKYV105D 1" Direct PVC Spigot **EPDM** Acting 120 PSI DKYV106D 354200 11/4" Pneumatic DKYV107D 354201 11/2" DKYV108D 354227 2"

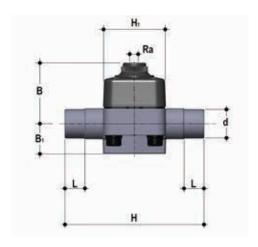
Significant Number

Code	DK	Υ	V	1	05	D	
Position	1	2	3	4	5	6	7

Position	Code	Description		
1		Model		
ļ	DK	Diaphragm Valve		

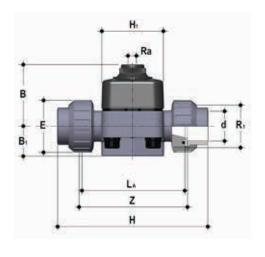
		Connection
2	U	True Union
	Υ	IPS Sigot

3	Body Material			
	V	PVC		

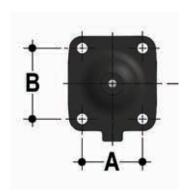

,	Liner Material		
4	1	EPDM	

	Size	Imperial	DN
	03	1/2"	15 mm
	04	3/4"	20 mm
5	05	1″	25 mm
	06	1-1/4"	32 mm
	07	1-1/2"	40 mm
	08	2"	50 mm

,	Disc Material				
6	D	Direct Acting Pneumatic			

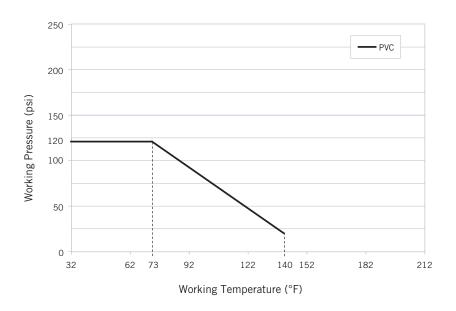

	Control Style					
7	S	Silicone Free Not Applicable (Leave Blank)				

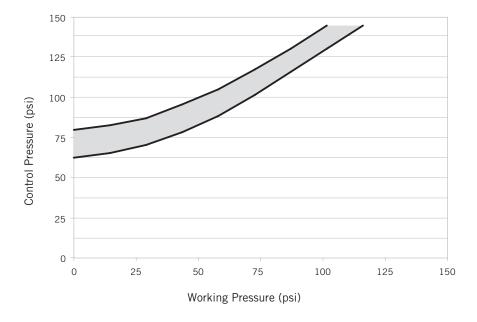
Dimensions


Spigot Valve – Dimension (inches)

d	DN	В	B ₁	Н	H ₁	L	R.	Weight (lbs)
1/2"	15	2.28	0.98	5.46	2.56	0.93	1/4"	0.68
3/4"	20	2.40	1.16	6.06	2.56	1.01	1/4"	0.82
1"	25	2.76	1.30	6.06	2.76	1.15	1/4"	1.32
1-1/4"	32	2.83	1.18	7.52	2.76	13.58	1/4"	1.60
1-1/2"	40	3.43	1.38	7.68	3.90	1.42	1/4"	2.89
2"	50	4.29	1.81	8.86	4.49	1.54	1/4"	5.10

True Union Valve – Dimension (inches)


d	В	B ₁	E	н	Н,	La	$R_{_1}$	Z	Ra	Weight (lbs)
1/2"	2.28	0.98	1.61	5.63	2.56	3.54	1"	3.86	1/4"	0.86
3/4"	2.40	1.18	1.97	6.57	2.56	4.25	11/4"	4.53	1/4"	0.99
1"	2.76	1.30	2.28	7.09	2.76	4.57	11/2"	4.80	1/4"	2.68
1-1/4"	2.83	1.18	2.83	8.19	2.76	5.28	2"	5.67	1/4"	2.68
1-1/2"	3.43	1.38	3.11	9.21	3.90	6.06	2 1/2"	6.46	1/4"	2.68
2"	4.29	1.81	3.86	10.71	4.49	7.24	2 3/4"	7.68	1/4"	2.97



EPDM Dimensions - Dimension (inches)

DN	1/2"	3/4"	1″	1 1/4"	1 1/2"	2"
Spigot	1.57	1.57	1.81	1.81	2.56	3.07
В	1.73	1.73	2.13	2.13	2.76	3.23

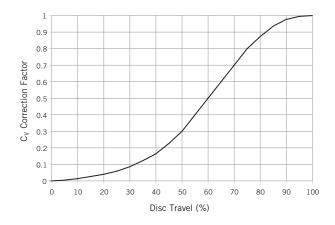
Pressure - Temperature Ratings

NOTES:

- The maximum working pressure is 120 psi for all sizes.
- The maximum control pressure allowed for all sizes is 145 psi.
- The control fluid temperature should not exceed 125°F.

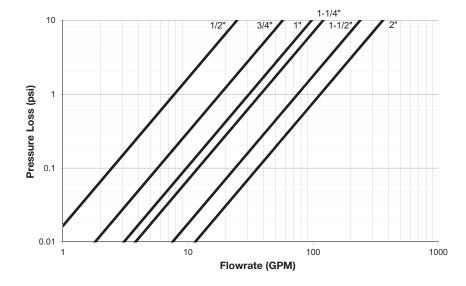
Flow Coefficients

The flow coefficient (C_v) represents the flow rate in gallons per minute (GPM) at 68°F for which there is a 1 psi pressure drop across the valve in the fully open position. These values are determined from an industry standard testing procedure which uses water as the flowing media (specific gravity of 1.0). To determine specific flow rate and pressure loss scenarios, one can use the following formula:


$$f = sg \ \mathsf{X} \left(\frac{Q}{C_V}\right)^2$$

Where,

- f is the pressure drop (friction loss) in psi,
- sg is the specific gravity of the fluid,
- Q is the flow rate in GPM,
- C_V is the flow coefficient.


Flow Coefficient Correction Factor

Use this chart to determine the appropriate flow coefficient correction factor depending on the amount of disc travel. As the valve cycles from fully open (100% travel) to fully closed (0% travel), the corresponding C_V value will decrease in accordance with the adjacent graph.

C _v
7.8
18.1
30.8
38.1
75.3
114.2

Pressure Loss Chart

Actuator Information

Pneumatic Actuator – Technical Specifications

Construction	Direct action pneumatic actuator (NO)
Actuator Material	Bonnet: PP-GR
Control Fluid Pressure	Minimum: 8 – 22 psi Maximum: 145 psi
Power Supply	Media: Air or Water Clean fluid, free from mineral based lubricants, which are aggressive on EPDM rubber. If using other fluids, contact the IPEX
Control Fluid Temperature	Max 120 °F
Working Fluid Temperature	-4 °F to 120 °F
Accessories	Pilot solenoid valves 3/2 ways for direct or manifold mounting

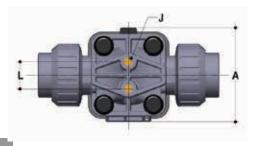
Actuator Capacity

d	1/2"	3/4"	1″	11/4"	11/2"	2"
Normal Litre	0.13	0.13	0.28	0.28	0.5	0.5
Standard Cubic inch	7.93	7.93	17.09	17.09	30.51	30.51

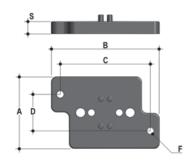
Components

#	Component	Material	Qty
1	Sealing bonnet	PP-GR	1
7	Diaphragm	EPDM	1
8	Valve body	PVC-U	1
9	Socket seal O-ring	EPDM	2
10	End connector	PVC-U	2
11	Union nut	PVC-U	2
12	Washer	Stainless Steel	4
13	Bolt	Stainless Steel	4
14	Protection plug	PE	4
15	Distance plate	PP-GR	1
16	Screws	Stainless Steel	2

Accessories


Fastening and Supporting

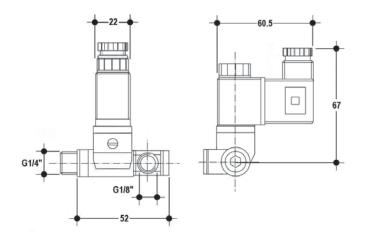
All valves, whether manual or actuated, must be adequately supported in many applications.


The DKD series provides an integrated bracket that permits direct anchoring of the valve body without the need of other components.

For wall or panel installation, dedicated PMDK mounting plates which are available as accessories can be used. These plates should be fastened to the valve before wall installation.

Dimension (inches)							
Size	А	L	J				
1/2	2.91	0.98	M6 x 10				
3/4	2.91	0.98	M6 x 10				
1	3.43	0.98	M6 x 10				
1-1/4	3.43	0.98	M6 x 10				
1-1/2	4.49	1.75	M8 x 14				
2	5.35	1.75	M8 x 14				

PMDK - Wall mounting Plate (Dimension in inches)


Size	А	В	С	D			IPEX Part Number	Significant Part Number
1/2" - 1-1/4"	2.56	3.82	3.19	1.30	0.22	0.43	154468	KITPMDK1
1-1/2" - 2"	2.56	5.67	5.12	1.30	0.26	0.43	154469	KITPMDK2

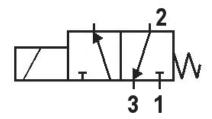
Technical Data Sheet - 3/2 Way Pilot Valve Type

SD/NC

Direct mounting 3/2 way solenoid valve Normally Closed for single acting actuators (NC and NO)

SM/NC

Manifold mounting 3/2 way solenoid valve Normally Closed for single acting actuators DN10-50 (NC and NO)



Technical Data Sheet – 3/2 Way Pilot Valve Type

Technical Data

	recrimical Data		
Size (DN)	1.2	mm	
Installation Position	Any		
Function	Normal	ly Closed	
Pneumatic Connections	Model SD	Model SM	
Air Supply	G 1/8"	G 1/4"	
User	G 1/4"	G 1/8"	
Housing Material	PA	4	
Seal Material	NBR – FKM* ((on request)	
Features of Control Media	Filtered, lubricated o	r non-lubricated air	
Ambient Temperature	-10°C -	+55°C	
Media Temperature	-10°C − +55°C		
Working Pressure	0 – 10 bar		
Flow Rate	60 NL		
Switching Frequency	max s	5 Hz	
Switching Time	ON: 11 ms / 0	OFF: 20 ms	
Voltage	12V DC* - 24V I 24V AC - 110V AC		
Voltage Tollerance	+/-1	10%	
Power Consumption	3W / 4	4,8W	
Electrical Connections	Conne	ector	
Protection Class	IP65		
Available Options*	UL-App	proved	

^{*} On request

Model	Function	Voltage	Code
SD		24V DC	
		24V AC	
		110V DC	
	NC	230V DC	
		24V DC	
		24V DC	
		110V DC	
		230V DC	

Sample Specifications

1. GENERAL

1.1 DEFINITIONS

- A. EPDM: Ethylene Propylene Diene Monomer Elastomer.
- B. FKM: Flouropolymer.
- C. PVC: Polyvinyl chloride Plastic.
- D. PE: Polyethylene.
- E. GFPP: Glass Filled Polypropylene.
- F. SS: Stainless Steel.

2. PRODUCTS

2.1 DIRECT ACTING DIAPRAGM VALVES

- A. Direct Acting Diaphragm Valves:
 - 1. The basis of design is the IPEX DKD Series diaphragm valve:
 - a. Body:
 - 1. Xirtec® PVC Schedule 80 PVC, cell class 12454 per ASTM D1784.
 - b. Body Color: Dark Grey.
 - c. Bonnet Color: Black.
 - d. Design:
 - 1. Fail position: normally open
 - 2. GFPP bonnet with 316 SS nuts and bolts and PE plugs.
 - 3. All wetted components shall comply with NSF Standard 61 for potable water.
 - 4. All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.
 - 5. Temperature Range: 32°F to 140°F
 - 6. Nominal pressure rating: 120 PSI @ 73°F
 - e. Size: As specified on the drawings.
 - f. End connection type:
 - 1. IPS Socket shall conform to dimensional standard ASTM D2466 and ASTM D2467.
 - 2. IPS Spigot shall conform to dimensional standard ASTM D1785.
 - 3. Female NPT Thread shall conform to dimensional standard ASTM D1785.
 - g. Diaphragm Material:
 - 1. EPDM.
 - h. O-rings
 - 1. EPDM.
 - i. Actuator:
 - 1. Media:
 - a. Air.
 - b. Water.
 - 2. Operation: On / Off flow control.
 - 3. Fail Position: Normally Open.
 - 4. Control media connection: 1/4" Threaded NPT.

- 5. Maximum allowable control pressure: 145 PSI at 73°F
- 6. Control temperature range: -4°F to 120°F

Accessories:

- 1. The contractor shall supply and furnish IPEX's wall mounting plate as required to secure the DKD diaphragm valve to the wall.
- 2. The contractor shall supply a 3/2 ways electromagnetic pilot solenoid valve for direct or manifold mounting.
 - a. 24V DC Voltage
 - b. Operating temperature range 15°F to 130°F
 - c. Working pressure: 145 PSI
 - d. 100% Duty Cycle
 - e. IP65 enclosure rating
 - f. FKM will be used as the seal material
 - g. UL/CSA listing
 - h. The pilot solenoid control valve shall be supplied by the valve manufacturer

2. Acceptable Manufacturers

- a. IPEX
- b. Or approved alternate
 - Requests for alternate material must be approved by the consulting engineer prior to the bid closing date.

3. EXECUTION

3.1 EXAMINATION

- A. Valve Interiors: Clean and free of foreign matter, and corrosion. Remove packing used to prevent valve movement.
 - Operate valves from fully open to fully closed positions.
 - 2. Verify guides and seats are clean and free of foreign matter, and corrosion.
- B. Threads on Valves Fittings and Fixtures: Inspect valve and mating pipe for form and cleanliness.
- C. Do not proceed until unsatisfactory conditions have been corrected.

3.2 VALVE INSTALLATION

- A. Install products in accordance with manufacturer's instructions, approved submittals, and in proper relationship with adjacent construction.
 - 1. Valves in horizontal piping to have stems at or above pipe center.
 - 2. Valves to be positioned allowing full movement.
 - 3. Valves with threaded connections to have unions at each piece of equipment.
 - a. Arrange to allow easy access, service, maintenance, and equipment removal without system shutdown. Provide separate support where necessary.

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

Installation Procedures

- 1. The valve may be installed in any position or direction.
- 2. Please refer to the appropriate connection style sub-section:
 - a. For spigot style, solvent cement each pipe onto the ends of the valve body. Ensure that excess solvent does not run into the body of the valve.
 - b. For true union style, remove the union nuts and slide them onto the pipe.
 - i. For socket style, solvent cement the end connectors onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Ensure that excess solvent does not run into the body of the valve. Be sure to allow sufficient cure time before continuing with the valve installation.
 - ii. For threaded style, thread the end connectors onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods - Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
 - iii. Ensure that the socket o-rings are properly fitted in their grooves then carefully place the valve in the system between the two end connections.
 - iv. Tighten both union nuts. Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Over-tightening may damage the threads on the valve body and/or the union nut, and may even cause the union nut to crack.
 - c. For flanged style, join both flanges to the pipe flanges. For correct joining procedure, please refer to the section entitled, "Joining Methods -Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
- Connect a suitable air supply and pilot system to the actuator. Be sure to check that both the working and control pressure are in accordance with the specifications.
- 4. If anchoring is required, fix the valve to the supporting structure using the mounting holes on the bottom of the valve body.

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the line. Be sure to depressurize and drain the valve and isolated branch.
 Depressurize and disconnect the pneumatic control line before continuing with disassembly.
- If necessary, detach the valve from the support structure by disassembling the threaded connections on the bottom of the valve body.
- Please refer to the appropriate connection style subsection:
 - For spigot style, cut the pipe on either side of the valve and remove from the line.
 - b. For true union connections, loosen both union nuts and drop the valve out of the line. If retaining the socket o-rings, take care that they are not lost when removing the valve from the line.
- Remove the protective caps then loosen and remove the bolts and washers from the bottom of the valve body.
- 5. Remove the diaphragm from the valve body.
- The valve components can now be checked for problems and/or replaced.

Assembly

NOTE: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- 1. Position the diaphragm on the bonnet.
- Place the bonnet and diaphragm onto the valve body taking care to properly line up the sealing surfaces.
- 3. Insert the bolts and washers and tighten in an even (cross-like) pattern.
- 4. Replace the protective caps.

IPEX VM Series Diaphragm Valves are the ideal solution for modulating flow and controlling dirty or contaminated fluids in a variety of applications. The weirstyle design allows for precise throttling while the compact design allows for installation in any orientation. The modular nature of this valve results in many material, body style, and diaphragm options. VM Series Diaphragm Valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

VALVE AVAILABILITY

Body Material:	PVC, CPVC, PP, PVDF
Size Range:	3" through 4"
Pressure:	150 psi
Diaphragm:	EPDM, FKM or PTFE (EPDM backed)
Control Style:	Manual Handwheel
End Connections:	Spigot, True Union (Socket), Flanged (ANSI 150)

Sample Specification

1.0 Diaphragm Valves - VM Manual

1.1 Material

- The valve body, including end connectors and unions, shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.
- or The valve body, including end connectors and unions shall be made of Corzan® CPVC compound which shall meet or exceed the requirements of 23447 according to ASTM D1784.
- or The valve body, including end connectors and unions shall be made of stabilized PP homopolymer compound, also containing a RAL 7032 pigment, which shall meet or exceed the requirements of Type I Polypropylene according to ASTM D4101-86.
- or The valve body, including end connectors and unions shall be made of virgin, non-regrind PVDF compound which shall meet or exceed the requirements of Table 1 according to ASTM D3222.
- The valve bonnet assembly shall be made of high temperature, high strength, glass-filled polypropylene.

1.2 Diaphragm

- The diaphragm shall be made of EPDM.
- or The diaphragm shall be made of FKM.
- or The diaphragm shall be made of PTFE (backed with EPDM).

2.0 Connections

2.1 Spigot style

- The IPS spigot PVC end connectors shall conform to the dimensional standard ASTM D1785.
- or The IPS spigot CPVC end connectors shall conform to the dimensional standard ASTM F441.
- or The Metric spigot PP end connectors shall conform to the dimensional standard ISO 3609.
- or The Metric spigot PVDF end connectors shall conform to the dimensional standard ISO 10931.

2.2 Socket style

- The IPS socket PVC end connectors shall conform to the dimensional standards ASTM D2466 and ASTM D2467.
- or The IPS socket CPVC end connectors shall conform to the dimensional standard ASTM F439.

- or The Metric socket PP end connectors shall conform to the dimensional standard ISO 3609.
- or The Metric socket PVDF end connectors shall conform to the dimensional standard ISO 10931.

2.3 Flanged style

- The ANSI 150 flanged PVC end connectors shall conform to the dimensional standard ANSI B16.5.
- or The ANSI 150 flanged CPVC end connectors shall conform to the dimensional standard ANSI B16.5.
- or The ANSI 150 flanged PP end connectors shall conform to the dimensional standard ANSI B16.5.
- or The ANSI 150 flanged PVDF end connectors shall conform to the dimensional standard ANSI B16.5.

3.0 Design Features

- All valves shall be weir-style for throttling applications.
- All bodies to be used with EPDM or Viton® diaphragms shall feature raised molded sealing rings (concentric).
- All bodies to be used with PTFE diaphragms shall be machined flat.
- All PTFE diaphragms shall feature a raised molded ring to combine sealing performance and longer life.
- All through bolts shall be made of 304 stainless steel.
- All manual valves shall have a rising position indicator.
- Bodies of all sizes and materials shall have mounting brass inserts.

3.1 Pressure Rating

All valves shall be rated at 150 psi at 73°F.

3.2 Markings

 All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.3 Color Coding

- All PVC valves shall be color-coded dark gray.
- or All CPVC valves shall be color-coded light gray.
- or All PP valves shall be color-coded beige gray.
- or All PVDF valves shall not be color-coded and be white in appearance.
- All bonnet assemblies shall be color-coded black.
- 4.0 All valves shall be Xirtec® PVC, Xirtec® CPVC, PP or PVDF by IPEX or approved equal.

VALVES

VM SERIES MANUAL DIAPHRAGM VALVES

Valve Selection

Valve Size	Body	ot and and and and and	IPEX Part Number			Pressure Rating
(inches) Material	Material		Spigot	True Union	ANSI Flanged	@ 73°F
		EPDM	054182		054227	150 psi
	PVC	FKM	054191		054236	
3		PTFE	054200	m / m	054245	
3		EPDM	054254	n/a	054299	
CPV	CPVC	FKM	054263		054308	
		PTFE	054272		054317	
PVC 4 CPVC		EPDM	054183	n/a	054228	
	PVC	FKM	054192		054237	
		PTFE	054201		054246	
	CPVC	EPDM	054255		054300	
		FKM	054264		054309	
		PTFE	054273		054318	

ъ .	
Roay	Material

PVC
CPVC

Size (inches):

3
4

Diaphragm:

	EPDM
	FKM
П	PTFF

End Connections:

	Spigot
	True Union (Socket)
П	Flanged (ANSI 150)

IPEX Part Number:

Valve Size Body		Diaphragm	IPEX Part	IPEX Part Number	
(mm)	(mm) Material	Material	Spigot	True Union	@ 73°F
		EPDM	054326		
	PP	FKM	054335		
90		PTFE	054344	n/a	1EO poi
90		EPDM	054371	n/a 150	150 psi
PVDF	PVDF	FKM	054380		
		PTFE	054389		
		EPDM	054327	n/a 150	
PP 110 PVDF	PP	FKM	054336		
		PTFE	054345		1FO := :
		EPDM	054372		150 psi
	PVDF	FKM	054381		
		PTFE	054390		

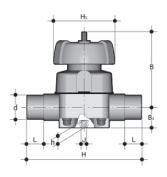
Body Material:

Ш	PP
	PVDF

Size (inches):

90mm
110mm

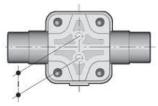
Diaphragm:


	EPDM
	FKM
П	PTFF

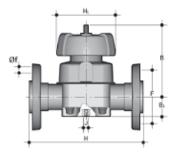
End Connections:

Ш	Spigot
	True Union (Socket)
	Flanged (ANSI 150)

IPEX Part Number:

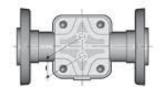

Dimensions

Spigot Connections


Dimension (inches)

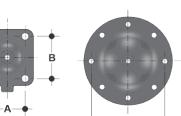
Size	PVC / CPVC d (in)	PP / PVDF d (mm)	н	L
3	3.50	90	11.81	2.01
4	4.50	110	13.39	2.40

Dimer	nsion	(inches)
	131011	(11 101 103)


Size	B ₁	В	H ₁	J		
3	2.17	8.86	8.46	M12	0.91	3.94
4	2.72	11.61	9.84	M12	0.91	4.72

ANSI 150 Flanged (Vanstone) Connections

Dimer	nsion	(inc	hes)


Size	d	Н	B ₁	В	H₁
3	3.50	11.81	2.17	8.86	8.46
4	4.50	13.39	2.72	11.61	9.84

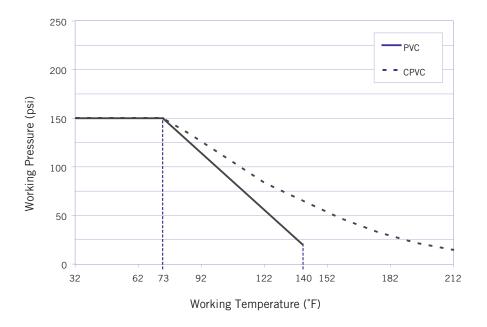
Dimension (inches)

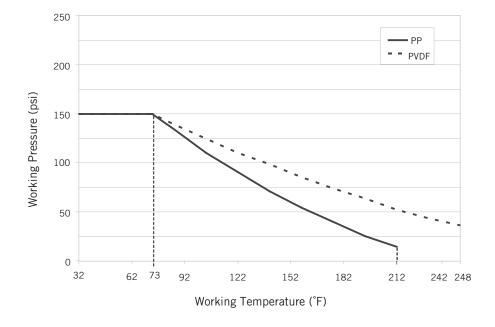
Size	# holes			J		
3	4	3/4	6	M12	0.91	3.94
4	4	3/4	7-1/2	M12	0.91	4.72

Size 4"

Diaphragm

Dimension (inches)

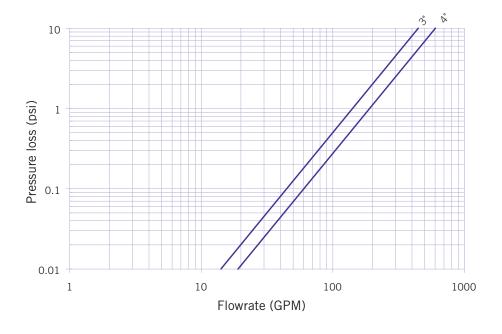

Size (inches)	Size (mm)	Α	В
3	90	4.49	5.00
4	110	7.60	-

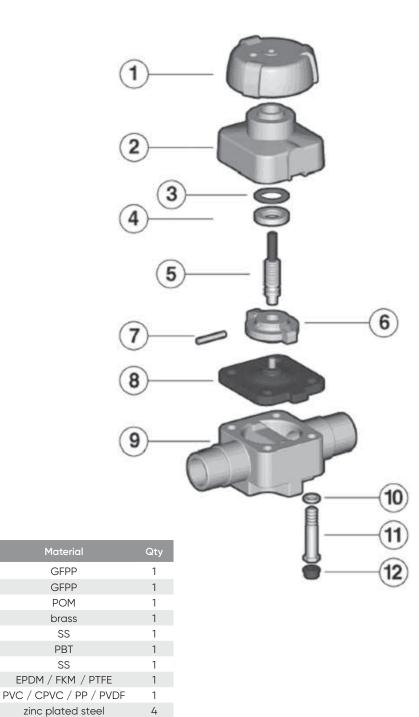

Weights

Approximate Weight (lbs)

						9 (,				
Size		PVC			CPVC			PP	I	PVDF
(inches)	Spigot	True Union	Flanged	Spigot	True Union	Flanged	Spigot	True Union	Spigot	True Union
3	15.43	n/a	18.60	16.01	n/a	19.33	13.23	n/a	17.15	n/a
4	23.15	n/a	28.34	23.94	n/a	29.39	19.84	n/a	25.65	n/a

Pressure - Temperature Ratings




Flow Coefficients

Size (in)	C _v
3	140
4	189

Pressure Loss Chart

Components

*	Snare	narts	available.	
	Spare	DUILS	avallable.	

handwheel

security ring

compressor

diaphragm

valve body

protective cap

washer

hex bolt

pin

indicator - stem

compression bearing

bonnet

* 1

* 2

* 3

* 4

* 5

* 6

* 7

* 9

* 10

* 11

* 12

* 8

Items 1 through 7 are supplied as an assembly.

Contact IPEX for availability of spare components for True Union and Flanged style valves.

POM

SS

PBT

SS

zinc plated steel

PΕ

Note: Sizes 2-1/2" to 4" have similar components.

4

4

Installation Procedures

- 1. The valve may be installed in any position or direction.
- Please refer to the appropriate connection style subsection:
 - a. For spigot style, solvent cement each pipe onto the ends of the valve body. Ensure that excess solvent does not run into the body of the valve.
 - b. For true union style, remove the union nuts and slide them onto the pipe.
 - i. For socket style, solvent cement the end connectors onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Ensure that excess solvent does not run into the body of the valve. Be sure to allow sufficient cure time before continuing with the valve installation.
 - ii. For threaded style, thread the end connectors onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods - Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
 - iii. Ensure that the socket o-rings are properly fitted in their grooves then carefully place the valve in the system between the two end connections.
 - iv. Tighten both union nuts. Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Over-tightening may damage the threads on the valve body and/or the union nut, and may even cause the union nut to crack.
 - c. For flanged style, join both flanges to the pipe flanges. For correct joining procedure, please refer to the section entitled, "Joining Methods – Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
- If anchoring is required, fix the valve to the supporting structure using the mounting holes on the bottom of the valve body.

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the line. Be sure to depressurize and drain the valve and isolated branch.
- 2. If necessary, detach the valve from the support structure by disassembling the threaded connections on the bottom of the valve body (9).
- Please refer to the appropriate connection style subsection:
 - a. For spigot style, cut the pipe on either side of the valve and remove from the line.
 - For true union connections, loosen both union nuts and drop the valve out of the line. If retaining the socket o-rings, take care that they are not lost when removing the valve from the line.
 - c. For flanged style, loosen each bolt holding the valve to the pipe flanges. Please refer to the section entitled, "Joining Methods Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" for a recommended bolt tightening pattern diagram. Follow the same pattern when disassembling the flanged joints then carefully remove the valve from the line.
- 4. Remove the protective caps (12), then loosen and remove the bolts (11) and washers (10) from the bottom of the valve body.
- 5. Loosen and remove the diaphragm (8) from the compressor (6).
- 6. Rotate the handwheel (1) clockwise until the stem-compressor assembly (5, 6, 7) is released.
- The valve components can now be checked for problems and/or replaced.

Note: It is not recommended to attempt to further disassemble the handwheel/bonnet assembly as it may cause irreversible damage to the components.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- Insert the stem-compressor assembly into the bonnet and tighten by threading in a counterclockwise (left-hand thread) direction. The guide tabs on the compressor must be lined up with the bonnet grooves before cycling the handwheel to further retract the compressor.
- Insert the diaphragm into the compressor and turn in a clockwise direction until sufficiently tight. Ensure that the tab lines up with the notched side of the bonnet then cycle the handwheel counterclockwise until the diaphragm is fully retracted.
- 3. Place the bonnet and diaphragm onto the valve body taking care to properly line up the sealing surfaces.
- 4. Insert the bolts and washers and tighten in an even (cross-like) pattern.
- 5. Replace the protective caps on the bolt heads.

Assembly

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

IPEX VM Series Diaphragm Valves are the ideal solution for modulating flow and controlling dirty or contaminated fluids in a variety of applications. The weir-style design allows for precise throttling while the compact design allows for installation in any orientation. This pneumatically actuated version provides automatic control with an extensive range of options and accessories. The modular nature of this valve results in many material, body style, and diaphragm options. VM Series Diaphragm Valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

VALVE AVAILABILITY

Body Material:	PVC, CPVC, PP, PVDF
Size Range:	3" through 4"
Pressure:	150 psi (1/2" to 2"), 90 psi (2-1/2" to 4")
Diaphragm:	EPDM, FKM or PTFE (EPDM backed)
Control Style:	Pneumatically Actuated
End Connections:	Spigot, True Union (Socket), Flanged (ANSI 150)

ASTM D1784 ASTM D4101-86 ASTM D3222 ASTM D1785 ASTM F441 ASTM D2466 ASTM D2467 ASTM F439

ISO 3609 ISO 10931

ANSI B16.5

Sample Specification

1.0 Diaphragm Valves - VM Pneumatic

1.1 Material

- The valve body, including end connectors and unions, shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.
- or The valve body, including end connectors and unions shall be made of Corzan® CPVC compound which shall meet or exceed the requirements of 23447 according to ASTM D1784.
- or The valve body, including end connectors and unions, shall be made of stabilized PP homopolymer compound, also containing a RAL 7032 pigment, which shall meet or exceed the requirements of Type I Polypropylene according to ASTM D4101-86.
- or The valve body, including end connectors and unions, shall be made of virgin, non-regrind PVDF compound which shall meet or exceed the requirements of Table 1 according to ASTM D3222.
- The valve bonnet assembly shall be made of high temperature, high strength, glass-filled polypropylene.

1.2 Diaphragm

- The diaphragm shall be made of EPDM.
- or The diaphragm shall be made of FKM.
- or The diaphragm shall be made of PTFE (backed with EPDM).

2.0 Connections

2.1 Spigot style

- The IPS spigot PVC end connectors shall conform to the dimensional standard ASTM D1785.
- or The IPS spigot CPVC end connectors shall conform to the dimensional standard ASTM F441.
- or The Metric spigot PP end connectors shall conform to the dimensional standard ISO 3609.
- or The Metric spigot PVDF end connectors shall conform to the dimensional standard ISO 10931.

2.2 Socket style

- The IPS socket PVC end connectors shall conform to the dimensional standards ASTM D2466 and ASTM D2467.
- or The IPS socket CPVC end connectors shall conform to the dimensional standard ASTM F439.
- or The Metric socket PP end connectors shall conform to the dimensional standard ISO 3609.
- or The Metric socket PVDF end connectors shall conform to the dimensional standard ISO 10931.

2.3 Flanged style

- The ANSI 150 flanged PVC end connectors shall conform to the dimensional standard ANSI B16.5.
- or The ANSI 150 flanged CPVC end connectors shall conform to the dimensional standard ANSI B16.5.
- or The ANSI 150 flanged PP end connectors shall conform to the dimensional standard ANSI B16.5.
- or The ANSI 150 flanged PVDF end connectors shall conform to the dimensional standard ANSI B16.5.

3.0 Design Features

- · All valves shall be weir-style for throttling applications.
- All bodies to be used with EPDM or Viton® diaphragms shall feature raised molded sealing rings (concentric).
- All bodies to be used with PTFE diaphragms shall be machined flat.
- All PTFE diaphragms shall feature a raised molded ring to combine sealing performance and longer life.
- All through bolts shall be made of 304 stainless steel.
- Bodies of all sizes and materials shall have mounting brass inserts.

3.1 Actuators

- All actuators shall be made of glass-filled polypropylene.
- All actuators shall feature a smooth top (no nut holes) for cleanliness.
- The edge of the actuator membrane shall be inside of the actuator protective housing.
- All springs shall be cut from spring grade steel for maximum memory life and epoxy coated for maximum chemical resistance.
- Fail safe to open and double-acting actuators shall feature weak springs located in the center of the actuator.
- Fail safe to close actuators shall feature three concentric springs located in the middle of the actuator.
- The following accessories shall be available for all actuators: position indicator, stroke limiter, stroke limiter with position indicator, limit switch, limit switch box, 3-15 psi positioner, 4-20 mA positioner, solenoid pilot valve.

3.2 Pressure Rating

- Valve sizes 1/2" through 2" shall be rated at 150 psi at 73°F.
- Valve sizes 2-1/2" through 4" shall be rated at 90 psi at 73°F.

3.3 Markings

 All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.4 Color Coding

- All PVC valves shall be color-coded dark gray.
- or All CPVC valves shall be color-coded light gray.
- or All PP valves shall be color-coded beige gray.
- or All PVDF valves shall not be color-coded and be white in appearance.
- · All bonnet assemblies shall be color-coded red.
- **4.0** All valves shall be Xirtec® PVC, Xirtec® CPVC, PP or PVDF by IPEX or approved equal.

DIAPHRAGM VALVES

VM SERIES PNEUMATIC DIAPHRAGM VALVES

Valve Selection

					IPEX Part	t Number				Во	dy Material:
Valve Size	Body Material	Diaphragm Material	Normally	/ Open &	Air to Air	Nor	mally Clo	sed	Pressure Rating @		PVC
(inches)	Material	Material	Spigot	True Union	ANSI Flanged	Spigot	True Union	ANSI Flanged	73°F		CPVC
		EPDM	054417		054462	054651		054696		Siz	e (inches):
	PVC	FKM	054426		054471	054660		054705			3
3		PTFE	054435		054480	054669		054714			4
3		EPDM	054489		054534	054723		054768			
	CPVC	FKM	054498		054543	054732		054778		D:	n n h v e e e e e
		PTFE	054507	no / ou	054552	054741	n / m	054787	1FO si		aphragm: EPDM
	PVC	EPDM	054418	n/a	054463	054652	- n/a	054697	150 psi		FKM
		FKM	054427		054472	054661		054706		PTFE	
,		PTFE	054436		054481	054670		054715			
4		EPDM	054490		054535	054724		054769		Co	ntrol Style:
	CPVC	FKM	054499		054544	054733		054779		П	Pneumatic
		PTFE	054508		054553	054742		054788		Ш	(Normally Open & Air to Air)
											Pneumatic (Normally Closed)
										En	d Connections:
											Spigot True Union (Socket) Flanged (ANSI 150)

IPEX Part Number:

Valve Selection

	-	-	-	IPEX Part	Number	-	-	Body Material:
Valve Size (mm)	Body Material	Diaphragm Material	Normally Op	en & Air to Air	Normall	y Closed	Pressure Rating @ 73°F	□ PP □ PVDF
(111111)			Spigot	True Union	Spigot	True Union	/3 F	
		EPDM	054561		054796			Size (inches):
	PP	FKM	054570		054805			
90		PTFE	054579		054814			□ 90mm
90		EPDM	054606		054843			□ 110mm
	PVDF	FKM	054615		054852			
		PTFE	054624	m / eu	054861	n / m	1FO := si	Diaphragm:
		EPDM	054562	n/a	054797	n/a	150 psi	
	PP	FKM	054571		054806			□ EPDM
110		PTFE	054580		054815			□ FKM □ PTFE
110		EPDM	054607		054844			- FIIC
	PVDF	FKM	054616		054853			
		PTFE	054625		054862			Control Style:
								☐ Pneumatic
								(Normally Open & Air to Air)
								Pneumatic (Normally Closed)
								End Connections:
								☐ Spigot
								☐ True Union (Socket)

IPEX Part Number:

Options and Accessories

Electrical Position Indicator

1 Switch Mechanical, Accessory B

Dimension (in)	IPEX Part Number
1/2	054952
1/2 - 1	054953
1-1/4 - 1-1/2	054954
2	054955
2-1/2 - 4	054956
1/2 - 1	054962
1-1/4 - 1-1/2	054963
2	054964
2-1/2-3	054965
4	054966
	1/2 1/2 - 1 1-1/4 - 1-1/2 2 2-1/2 - 4 1/2 - 1 1-1/4 - 1-1/2 2 2-1/2 - 3

^{*} Special machining needed for the valve bonnet and compressor.

Microswitches (NEMA 4X)

2 Switches	Electromechanical,	Accessory C
Style	Dimension (in)	IPEX Part Number
VM / NC	1/2 - 1-1/2	054967
VM / NC	2 – 4	054968
VM / NO	1/2 - 4	054969

Microswitches (NEMA 4X)

	2 Switches Inductive, Accessory Cl					
ı	Style	Dimension (in)	IPEX Part Number			
	VM / NC	1/2 - 1-1/2	054970			
	VM / NC	2 – 4	054971			
	VM / NO	1/2 - 4	054972			

Microswitches (NEMA 4X)

2 Switches Electromechanical, Accessory D

Microswitches (NEMA 4X)

2 Switches Inductive, Accessory DI						
	Style	Dimension (in)	IPEX Part Number			
	VM / NC	1/2 - 1	054980			
	VM / NC	1-1/4 - 1-1/2	054981			
	VM / NC	2	054982			
	VM / NO	1/2 - 1	054983			
	VM / NO	1-1/4 - 1-1/2	054984			
	VM / NO	2	054985			
	CM / NC - NO	1/2	054986			

T-IB

PS Pilot Valve - Direct Mount

Direct mount solenoid pilot valve for VM and CM series valves

Style	Dimension (in)	Seal Material	IPEX Part Number
VM Series	1/4	Viton®	053074
CM Series	1/8	Viton®	053075

Standard voltage is 110 VAC. Other voltages available upon request.

PS Pilot Valve – Gang or Remote Mount

Gang mount solenoid pilot valve for VM and CM series valves

Style Dimension (in) Seal Material IPEX Part Number

Gang Mount 1/4 Viton® 053076

Standard voltage is 110 VAC. Other voltages available upon request.

Stroke Limiter - Accessory F

Style	Dimension (in)	IPEX Part Number			
VM / NC	1/2 - 1-1/2	054991			
VM / NC	2	054992			
* VM / NC	2-1/2 - 4	054993			
VM / NO - DA	1-1/2 - 2	054994			
VM / NO - DA	2-1/2 - 4	054995			
CM / NC	1/2	054996			
Protection age included for VM					

Protection cap included for VM.

^{*} Actuator must have the metal cap.

Position Indicator - Accessory G

Style	Dimension (in)	IPEX Part Number
VM / NC - NO - DA	1/2 – 2	054997
VM / NC - NO - DA	2-1/2 - 4	054998

Protection cap included, see assembly instructions.

Stroke Limiter w/ Position Indicator - Accessory H

Style	Dimension (in)	IPEX Part Number
VM / NC	1/2 – 1	054999
VM / NC	1-1/4 - 1-1/2	053063
VM / NC	2	053064
* VM / NC	2-1/2 - 4	053065
VM / NO - DA	1/2 - 2	053066
VM / NO - DA	2-1/2 - 4	053067
CM / NC	1/2	053068

Protection cap included for VM.

^{*} Actuator must have the metal cap.

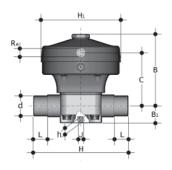
Stroke Limiter w/ Position Indicator and Manual Override – Accessory I

Style	Dimension (in)	IPEX Part Number			
VM / NC	1/2 - 1	053069			
VM / NC	1-1/4 - 1-1/2	053070			
VM / NC	2	053071			
VM / NO - DA	1/2 - 1	053072			
VM / NO - DA	1-1/4 - 2	053073			
Protection cap included.					

PS Pilot Valve - Direct Mount

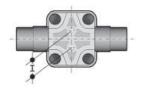
Direct mou	Direct mount solenoid pilot valve for VM and CM series valves									
Style										
VM Series	1/4	Viton®	053074							
CM Series	1/8	Viton®	053075							

Standard voltage is 110 VAC. Other voltages available upon request.

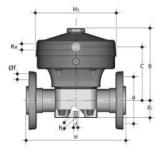

PS Pilot Valve - Gang or Remote Mount

Gang mount solenoid pilot valve for VM and CM series valves
Style Dimension (in) Seal Material IPEX Part Number

Gang Mount 1/4 Viton® 053076

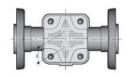

Standard voltage is 110 VAC. Other voltages available upon request.

Dimensions

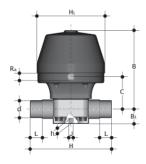


Normally Open & Air to Air – Spigot Connections

Size (in)	PVC / CPVC d (in)	PP / PVDF d (mm)	H (in)	L (in)	B ₁ (in)
3	3.50	90	11.81	2.01	2.17
4	4.50	110	13.39	2.40	2.72

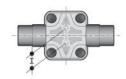


Size (in)	C (in)	Ra (in)	B (in)	H ₁ (in)	J (in)	h (in)	I (in)
3	9.92	1/4	12.01	10.16	M12	0.91	3.94
4	10.55	1/4	12.99	10.16	M12	0.91	4.72



Normally Open & Air to Air – ANSI 150 Flanged (Vanstone) Connections

Size (in)	d (in)	H (in)	B ₁ (in)	C (in)	Ra (in)	B (in)	H₁ (in)
3	3.50	11.81	2.17	9.92	1/4	12.01	10.16
4	4.50	13.39	2.72	10.55	1/4	12.99	10.16

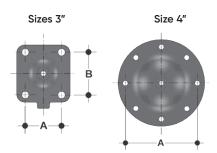


Size (in)	# holes (in)	f (in)	F (in)	J (in)	h (in)	l (in)
3	4	3/4	6	M12	0.91	3.94
4	4	3/4	7-1/2	M12	0.91	4.72

Normally Closed – Spigot Connections

Size (in)	PVC / CPVC d (in)	PP / PVDF d (mm)	H (in)	L (in)	B ₁ (in)
3	3.50	90	11.81	2.01	2.17
4	4.50	110	13.39	2.40	2.72

Size (in)	C (in)	Ra (in)	B (in)	H ₁ (in)	J (in)	h (in)	I (in)
3	7.36	1/4	12.80	10.16	M12	0.91	3.94
4	10.55	1/4	13.98	10.16	M12	0.91	4.72



Normally Closed – ANSI 150 Flanged (Vanstone) Connections

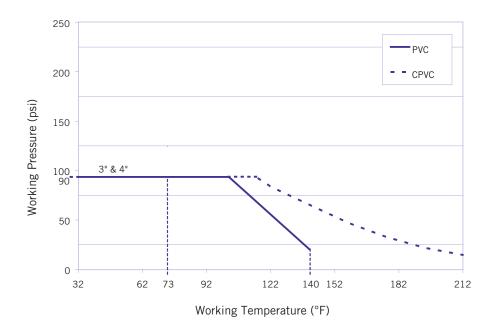
Size (in)	d (in)	H (in)	B ₁ (in)	C (in)	Ra (in)	B (in)	H ₁ (in)
3	3.50	11.81	2.17	7.36	1/4	12.80	10.16
4	4.50	13.39	2.72	10.55	1/4	13.98	10.16

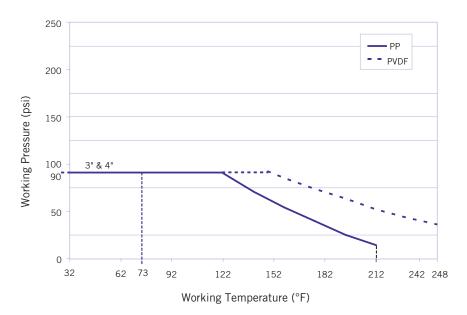
Size (in)	# holes (in)	f (in)	F (in)	J (in)	h (in)	I (in)
3	4	3/4	6	M12	0.91	3.94
4	4	3/4	7-1/2	M12	0.91	472

Diaphragm

Dimension (inches)								
Size (inches) Size (mm) A B								
3	90	4.49	5.00					
/1	110	7.60	_					

Weights

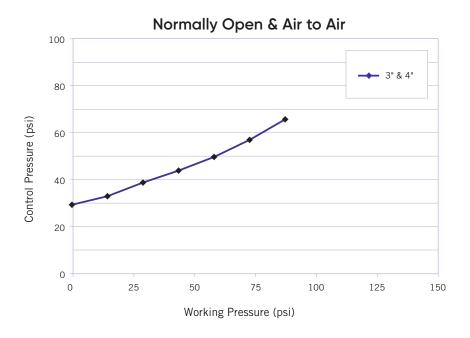

Approximate Weight (lbs) - Normally Open & Air to Air

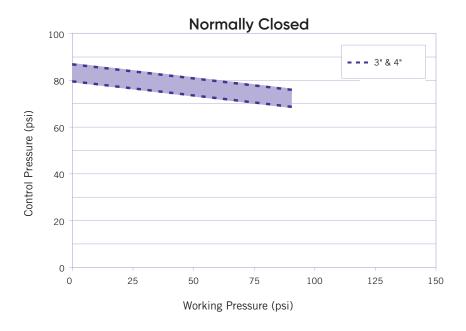

Size		PVC			CPVC			PP		PVDF	
(inches)	Spigot	True Union	Flanged	Spigot	True Union	Flanged	Spigot	True Union	Spigot	True Union	
3	28.66	n/a	31.83	29.23	n/a	32.56	26.46	n/a	30.37	n/a	
4	48.50	n/a	53.69	49.29	n/a	54.74	45.19	n/a	51.01	n/a	

Approximate Weight (lbs) - Normally Closed

Size	PVC			CPVC			PP		PVDF	
(inches)	Spigot	True Union	Flanged	Spigot	True Union	Flanged	Spigot	True Union	Spigot	True Union
3	34.17	n/a	37.34	34.74	n/a	38.07	31.97	n/a	35.89	n/a
4	56.22	n/a	61.41	57.01	n/a	62.46	52.91	n/a	58.72	n/a

Pressure - Temperature Ratings

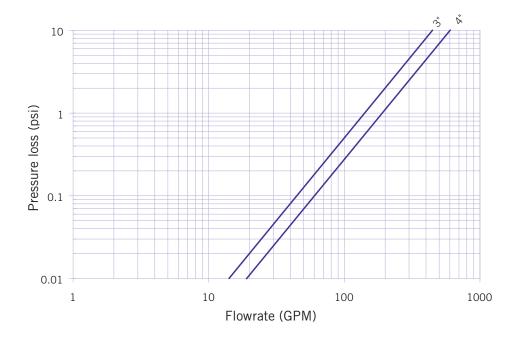




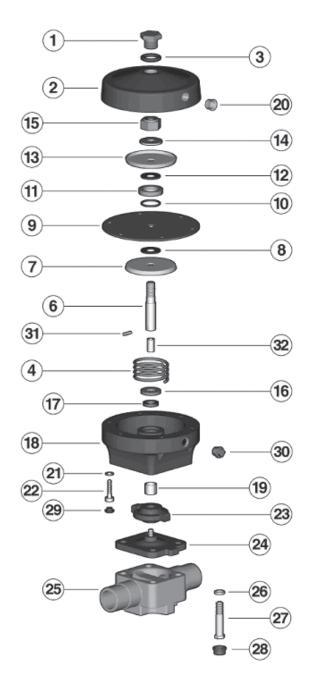
Notes:

- The maximum working pressure is 90 psi for sizes 3" & 4".
- The maximum control pressure allowed for all sizes is 90 psi.
- The control fluid temperature should not exceed 105°F.
- The fluid capacity of the actuator is 134 in³ for sizes 3" & 4".
- The fluid capacity of the actuator is 128 in $^{\! 3}$ for sizes 3" & 4".

Control Pressure


Notes:

- The maximum working pressure is 90 psi for sizes 3" & 4".
 The maximum control pressure allowed for all sizes is 90 psi.
- The control fluid temperature should not exceed 105°F.
- The fluid capacity of the actuator is 134 in³ for sizes 3" & 4".
- The fluid capacity of the actuator is 128 in 3 for sizes 3" & 4".

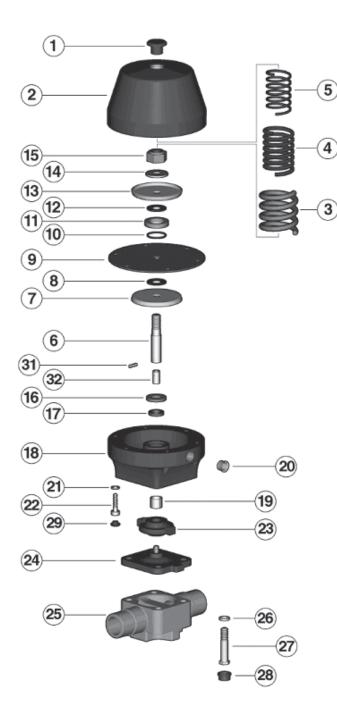

Flow Coefficients

Size (in)	C _v
3	140
4	189

Pressure Loss Chart

Components

Normally Open & Air to Air


#	Component	Material	Qty
1	threaded plug	AL	1
2	actuator – upper part	GRPP	1
3	o-ring	NBR	1
4	spring	carbon steel	1
6	spindle	stainless steel	1
7	press diaphragm-plate	zinc plated steel	1
8	washer	NBR	1
9	control diaphragm	CR	1
10	o-ring (sizes 1-1/4" to 2")	NBR	1
11	spacer ring (sizes 1-1/4" to 2")	zinc plated steel	1
12	washer	NBR	1
13	press diaphragm-plate	zinc plated steel	1
14	washer	zinc plated steel	1
15	locknut	zinc plated steel	1
16	security washer	brass	1
17	quad-ring	NBR	1
18	actuator – lower part	GRPP	1
19	spindle bearing	metal - PTFE	1
20	plug	PE	1
21	washer	zinc plated steel	6
22	cylindrical screw	zinc plated steel	6
23	compressor	PBT	1
24	sealing diaphragm	EPDM / Viton® / PTFE	1
25	valve body	PVC / CPVC / PP / PVDF	1
26	washer	zinc plated steel ¹	4
27	hex bolt	zinc plated steel ¹	4
28	protective cap	PE	4
29	protective cap	PP	6
30	threaded plug	brass	1
31	pin (sizes 1/2" to 2")	SS	1
32	coupling	SS	1

^{*} Spare parts available.

Items 1 through 7 are supplied as an assembly.

Contact IPEX for availability of spare components for True Union and Flanged style valves.

¹ Stainless steel for PVDF valves.

Normally Closed

	Component	Material	Qty
1	plug	PP	1
2	actuator – upper part	GRPP	1
3	spring	carbon steel	1
4	spring	carbon steel	1
5	spring	carbon steel	1
6	spingle	stainless steel	1
7	press diaphragm-plate	zinc plated steel	1
8	washer	NBR	1
9	control diaphragm	CR	1
10	o-ring (sizes 1-1/4" to 2")	NBR	1
11	spacer ring (sizes 1-1/4" to 2")	zinc plated steel	1
12	washer	NBR	1
13	press diaphragm-plate	zinc plated steel	1
14	washer	zinc plated steel	1
15	locknut	zinc plated steel	1
16	security washer	brass	1
17	quad-ring	NBR	1
18	actuator – lower part	GRPP	1
19	spindle bearing	metal - PTFE	1
20	plug	PE	1
21	washer	zinc plated steel	6
22	cylindrical screw	zinc plated steel	6
23	compressor	PBT	1
24	sealing diaphragm	EPDM / Viton® / PTFE	1
25	valve body	PVC / CPVC / PP / PVDF	1
26	washer	zinc plated steel ¹	4
27	hex bolt	zinc plated steel ¹	4
28	protective cap	PE	4
29	protective cap	PP	6
31	pin (sizes 1/2" to 2")	SS	1
32	coupling	SS	1

^{*} Spare parts available.

Items 1 through 7 are supplied as an assembly.

Contact IPEX for availability of spare components or True Union and Flanged style valves.

¹ Stainless steel for PVDF valves.

Installation Procedures

- 1. The valve may be installed in any position or direction.
- 2. Please refer to the appropriate connection style subsection:
 - a. For spigot style, solvent cement each pipe onto the ends of the valve body. Ensure that excess solvent does not run into the body of the valve.
 - b. For true union style, remove the union nuts and slide them onto the pipe.
 - i. For socket style, solvent cement the end connectors onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Ensure that excess solvent does not run into the body of the valve. Be sure to allow sufficient cure time before continuing with the valve installation.
 - For threaded style, thread the end connectors onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods – Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
 - iii. Ensure that the socket o-rings are properly fitted in their grooves then carefully place the valve in the system between the two end connections.
 - iv. Tighten both union nuts. Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Over-tightening may damage the threads on the valve body and/or the union nut, and may even cause the union nut to crack.
 - c. For flanged style, join both flanges to the pipe flanges. For correct joining procedure, please refer to the section entitled, "Joining Methods – Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
- 3. Anchoring is strongly recommended due to the weight of the actuator. The valve can be fixed to the supporting structure using the mounting holes on the bottom of the valve body.
- 4. Connect any accessories then a suitable air supply and pilot system to the actuator. Be sure to check that both the working and control pressure are in accordance with the specifications.

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the line. Be sure to depressurize and drain the valve and isolated branch. Depressurize and disconnect the pneumatic control line before continuing with disassembly.
- Detach the valve from the support structure by disassembling the threaded connections on the bottom of the valve body (25).
- Please refer to the appropriate connection style subsection:
 - a. For spigot style, cut the pipe on either side of the valve and remove from the line.
 - b. For true union connections, loosen both union nuts and drop the valve out of the line. If retaining the socket o-rings, take care that they are not lost when removing the valve from the line.
 - c. For flanged style, loosen each bolt holding the valve to the pipe flanges. Please refer to the section entitled, "Joining Methods Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" for a recommended bolt tightening pattern diagram. Follow the same pattern when disassembling the flanged joints then carefully remove the valve from the line.
- Remove the protective caps (28), then loosen and remove the bolts (27) and washers (26) from the bottom of the valve body.
- The valve components can now be checked for problems and/or replaced.

Note: For safety reasons, it is not recommended to attempt to disassemble the actuator. However if necessary, proceed as follows:

- Using a spring release (or press) to maintain pressure on the internal springs, remove the protective caps (29) then carefully loosen and remove the bolts (22) and washers (21).
- Back off the pressure on the spring release (or press) to separate the upper (2) and lower (18) parts of the actuator and remove the springs (4 for Normally Open, 3-5 for Normally Closed).
- 8. Loosen and remove the locknut (15) to disassemble the diaphragm control components (7 through 14).
- Remove the spindle (6, 31, and 32) compressor (23) diaphragm (24) assembly, taking care not to damage the quad-ring (17).
- Loosen and remove both the diaphragm and compressor.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- Assemble the compressor (23) with the diaphragm (24) and thread onto the spindle (6, 31, and 32).
- Insert the spindle into the lower part (18) of the actuator, ensuring proper placement of the quad-ring
- For Normally Open actuators, reposition the spring (4) in the lower part of the actuator.
- Properly assemble the diaphragm control components (7-14) on the spindle and fasten in place using the locknut (15).
- Carefully line up the holes of the control diaphragm (9) with the proper holes of the lower part of the actuator.
- For Normally Closed actuators, reposition the springs 6 (3-5) on the press-diaphragm plate (13).
- Properly position the upper part (2) of the actuator on the lower portion, then clamp in place using a spring release tool or press. Insert and tighten all bolts (22) and washers (21) then replace all protective caps (29).
- Sufficiently tighten the diaphragm (24) then back off slightly until the bolt holes line up.
- Position the assembled actuator on the valve body (25) while ensuring that the sealing surfaces properly line up. Insert and tighten all bolts (27) and washers (26) then replace all protective caps (28).

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.
- An unnecessarily high control pressure may shorten the life of the actuator. Pressure reducers are recommended.
- Slow cycle times will contribute to a longer actuator

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

Valve Maintenance

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the line. Be sure to depressurize and drain the valve and isolated branch. Depressurize and disconnect the pneumatic control line before continuing with disassembly.
- Detach the valve from the support structure by disassembling the threaded connections on the bottom of the valve body (25).
- 3. Please refer to the appropriate connection style subsection:
 - a. For spigot style, cut the pipe on either side of the valve and remove from the line.
 - b. For true union connections, loosen both union nuts and drop the valve out of the line. If retaining the socket o-rings, take care that they are not lost when removing the valve from the line.
 - c. For flanged style, loosen each bolt holding the valve to the pipe flanges. Please refer to the section entitled, "Joining Methods Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" for a recommended bolt tightening pattern diagram. Follow the same pattern when disassembling the flanged joints then carefully remove the valve from the line.
- 4. Remove the protective caps (28), then loosen and remove the bolts (27) and washers (26) from the bottom of the valve body.
- 5. The valve components can now be checked for problems and/or replaced.

Note: For safety reasons, it is not recommended to attempt to disassemble the actuator. However if necessary, proceed as follows:

- Using a spring release (or press) to maintain pressure on the internal springs, remove the protective caps (29) then carefully loosen and remove the bolts (22) and washers (21).
- 7. Back off the pressure on the spring release (or press) to separate the upper (2) and lower (18) parts of the actuator and remove the springs (4 for Normally Open, 3–5 for Normally Closed).
- 8. Loosen and remove the locknut (15) to disassemble the diaphragm control components (7 through 14).
- 9. Remove the spindle (6, 31, and 32) compressor (23) diaphragm (24) assembly, taking care not to damage the quad-ring (17).
- Loosen and remove both the diaphragm and compressor.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- 1. Assemble the compressor (23) with the diaphragm (24) and thread onto the spindle (6, 31, and 32).
- Insert the spindle into the lower part (18) of the actuator, ensuring proper placement of the quad-ring (17).
- 3. For Normally Open actuators, reposition the spring (4) in the lower part of the actuator.
- 4. Properly assemble the diaphragm control components (7–14) on the spindle and fasten in place using the locknut (15).
- Carefully line up the holes of the control diaphragm (9) with the proper holes of the lower part of the actuator.
- 6. For Normally Closed actuators, reposition the springs (3-5) on the press-diaphragm plate (13).
- Properly position the upper part (2) of the actuator on the lower portion, then clamp in place using a spring release tool or press. Insert and tighten all bolts (22) and washers (21) then replace all protective caps (29).
- 8. Sufficiently tighten the diaphragm (24) then back off slightly until the bolt holes line up.
- 9. Position the assembled actuator on the valve body (25) while ensuring that the sealing surfaces properly line up. Insert and tighten all bolts (27) and washers (26) then replace all protective caps (28).

IPEX DV Series Diaphragm Valves are rugged industrial products ideal for throttling or use in abrasive slurry lines. The raising position indicator also functions as an adjustable travel stop. This feature can be used to avoid overcompression of the diaphragm, or as a travel limiter allowing different settings for the "closed" position. The molded flanged body eliminates potentially leaky joints while featuring end-to-end dimensions identical to most plastic lined metal diaphragm valves, allowing for direct replacement. DV Series Diaphragm Valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

VALVE AVAILABILITY

Body Material:	PVC
Size Range:	1/2" through 6"
Pressure:	150 psi
Diaphragm:	EPDM or Teflon® (PTFE)
End Connections:	Flanged (ANSI 150)

VALVES

DV SERIES DIAPHRAGM VALVES

Sample Specification

1.0 Diaphragm Valves - DV

1.1 Material

- The valve body shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.
- This compound shall comply with standards that are equivalent to NSF Standard 61 for potable water.

1.2 Diaphragm

- The diaphragm shall be made of EPDM which shall comply with standards that are equivalent to NSF Standard 61 for potable water.
- or The diaphragm shall be made of Teflon® (PTFE) which shall comply with standards that are equivalent to NSF Standard 61 for potable water.

2.0 Connections

2.1 Flanged style

 The ANSI 150 flanged PVC end connections shall conform to the dimensional standard ANSI B16.5.

3.0 Design Features

- · All valves shall have integrally molded flanged ends.
- All valves shall have a clear position indicator.

- · All valves shall have an adjustable travel stop.
- All valves shall have face-to-face dimensions to the industry standard.
- The valve shall have no wetted metal parts.
- Service of the valve shall be possible without removal from the system line.

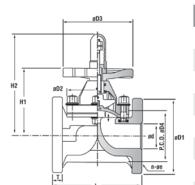
3.1 Pressure Rating

- Valve sizes 1/2" through 3" shall be rated at 150 psi at 73°F.
- Valve sizes 4" through 6" shall be rated at 75 psi at 73°F.

3.2 Markings

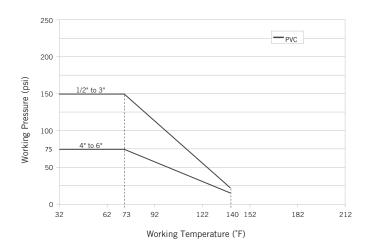
 All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.3 Color Coding


- All PVC valves shall be color-coded dark gray.
- All hand wheels shall be color-coded red.
- **4.0** All valves shall be Xirtec® PVC by IPEX or approved equal.

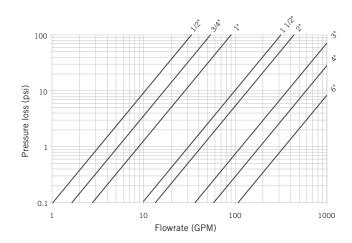
C:-- /:--- -- -- \.

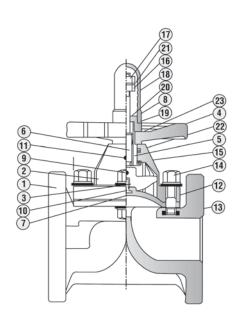
Valve Selection


Size	Body	O-ring	IPEX Part Number	Pressure Rating	Size (inches):
(inches)	Material	Material	FNPT Threaded	@ 73°F	□ 1/2 □ 2
1/2	PVC	EPDM	052196		□ 3/4 □ 3
1/ ∠	PVC	Viton®	052296		□ 1 □ 4
3/4	PVC	EPDM	052197		□ 1-1/2 □ 6
3/4	PVC	Viton®	052297		
1	PVC	EPDM	052198		
	PVC	Viton®	052298	1E0 poi	
1 1/0	PVC	EPDM	052207	150 psi	Diaphragm:
1-1/2	PVC	Viton®	052299		□ EPDM
2	PVC	EPDM	052208		□ Teflon® (PTFE)
2	PVC	Viton®	052354		
3	DVC	EPDM	052209		
3	PVC	Viton®	052355		
/.	PVC	EPDM	052217		IDEV Don't Normale and
4	PVC	Viton®	052356	7F mai	IPEX Part Number:
4	DVC	EPDM	052218	75 psi	
6	PVC	Viton®	052357		

Dimensions and Weights

						Dimensi	on (incl	nes)					
ı	Size	D1	D2	D3	D4	d	H1	H2	L		n-fe	Т	W (lbs)
	1/2	3.50	2.13 x 2.76	3.74	2.36	0.51	3.35	4.96	4.25	0.39	4-0.63	0.51	1.79
	3/4	3.86	2.48 x 3.07	3.74	2.76	0.71	3.70	5.39	5.91	0.47	4-0.63	0.59	2.20
	1	4.25	2.48 x 3.46	4.33	3.11	0.98	3.86	5.67	5.91	0.59	4-0.63	0.52	3.67
	1-1/2	5.00	4.92	5.91	3.86	1.61	5.12	8.66	6.93	0.87	4-0.63	0.67	4.91
	2	5.98	5.83	5.91	4.76	2.05	5.83	8.86	7.95	1.22	4-0.75	0.67	6.45
	3	7.52	7.99	8.27	5.98	3.07	9.84	13.50	10.39	1.89	4-0.75	0.79	15.43
	4	9.02	10.04	9.84	7.52	3.94	10.83	15.08	12.95	2.36	8-0.75	0.87	24.25
	6	10.98	15.16	16.14	9.49	5.83	13.15	18.74	18.90	2.76	8-0.87	0.94	65.04


Pressure - Temperature Ratings


Flow Coefficients

Size	C _v
1/2	3.27
3/4	5.29
1	8.87
1-1/2	31.1
2	43.2
3	117
4	187
6	345

Pressure Loss Chart

Components

#	Component	Material	Qty
1	body	PVC	1
2	bonnet	PVC	1
3	compressor	FC, SUS	1
4	hand wheel	PP	1
5	sleeve	C3602	1
6	stem	C3602	1
7	diaphragm	EPDM or Teflon®	1
8	cap	PVC	1
9	compressor pin	SUS 304	1
10	inserted metal	C3604, SUS 304	1
11	grease nipple	C3604 (65-150)	1
12	bolt & washer	150	12 ea
13	inserted nut	65-125	8 ea
14	nut & washer	25-50	6 ea
15	thrust bearing	Standard (100-150)	1
16	stopper nut	SUS 304	1
17	set nut	SUS304	1
18	gauge cover	AS	1
19	sheet gasket	EPDM	1
20	sheet ring	SUS 304	1
21	spring washer	SUP	1
22	o-ring	NBR	1
23	name plate	PVC	1

Installation Procedures

- 1. Remove the protective seals from either end of the valve then carefully place into the system between the two pipe flanges.
- Join each end of the valve to the pipe flanges. For correct joining procedure, please refer to the section entitled, "Joining Methods – Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".

Travel Stop Adjustment

- Loosen and remove the gauge cover (part #18 on previous page) from the position indicator assembly.
- 2. Remove and set aside the sheet gasket (19).
- 3. Loosen the stopper nut (16), spring washer (21), and set nut (17) from the stem (6).
- 4. Tighten the handwheel (4) slightly until the diaphragm completely seals.
- 5. Tighten down the stopper nut until it just touches the cap (8), then tighten the set nut and spring washer accordingly.
- 6. Fit the sheet gasket over the stem and down onto the cap, then replace the gauge cover and tighten.

Note: It is important not to over-tighten the valve during calibration as it may cause permanent damage to the diaphragm. The valve is completely closed when the handwheel cannot turn any further without using excessive torque.

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the system. Be sure to depressurize and drain the isolated branch and valve before continuing.
- Loosen end of the valve from the pipe flanges.
 Please refer to the section entitled, "Joining Methods


 Flanging" in the IPEX Industrial Technical Manual
 Series, "Volume I: Vinyl Process Piping Systems" for a recommended bolt tightening pattern diagram. Follow the same pattern when disassembling the flanged joints then carefully remove the valve from the line.
- 3. Ensure that the valve is in the fully open position.
- 4. Loosen and remove the gauge cover (part #18 on previous page) and the sheet gasket (19) from the position indicator assembly.
- 5. Loosen and remove the stopper nut (16), spring washer (21), and set nut (17) from the stem (6).
- Loosen and remove the cap (8) then the handwheel (4).
- Loosen and remove all bolts (12), nuts (14), and washers, then remove the bonnet – diaphragm assembly from the body (1).
- 8. To remove the diaphragm (7) from the bonnet (2), grip and gently turn in a counterclockwise direction.
- To remove the compressor (3) from the bonnet, temporarily replace the handwheel and turn in a clockwise direction. The compressor will start to emerge from the cavity in the bonnet and eventually become loose enough to remove.
- 10. To remove the sleeve (5), gently push it into the cavity of the bonnet from above.
- The valve components can now be checked for problems and/or replaced.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- 1. Insert the sleeve (5) into the cavity of the bonnet (2) and push firmly into place.
- Insert the compressor (3) into the bonnet (2) and gently rotate a few turns in a counterclockwise direction until the threads grip and the moldings line up with those on the bonnet.
- Temporarily place the handwheel (4) on the bonnet assembly and rotate in a counterclockwise direction until the compressor is fully retracted into the cavity in the bonnet.
- 4. Insert the integral screw on the diaphragm (7) into the compressor and turn in a clockwise direction until tight then **back off two full turns**.
- 5. Line up the holes on the diaphragm with those on the bonnet then gently push on the center of the diaphragm to ensure that the sleeve is properly fitted in the bonnet cavity. If the diaphragm is installed too tight, the sleeve will be pulled back into the bonnet cavity making installation of the handwheel impossible.
- 6. Place the bonnet diaphragm assembly on the body (1) then fasten with all bolts (12), nuts (14), and washers. It is recommended to tighten the bolts in a diagonal pattern to ensure even stress distribution and optimal sealing of the diaphragm.
- 7. Fit the handwheel on the bonnet, fasten in position with the cap (8), and then turn until the diaphragm completely seals.
- 8. Thread the stopper nut (16) onto the stem (6) then tighten down until it just touches the cap.
- 9. Place the spring washer (21) and set nut (17) on the stem and tighten down accordingly.
- 10. Fit the sheet gasket (19) over the stem and down onto the cap, then replace the gauge cover (18) and tighten.

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.
- Use caution not to over-tighten the valve during cycling as it may cause permanent damage to the diaphragm. The valve is completely closed when the handwheel cannot turn any further without using excessive torque.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

IPEX CM Series Compact Diaphragm Valves have an efficient design and are ideal for OEMs. A variety of body and diaphragm materials plus the option of pneumatic actuation combine to make this valve the perfect choice in a wide range of applications. A standard position indicator and integrated mounting bushings complete the long list of features. CM Series Compact Diaphragm Valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

VALVE AVAILABILITY

Body Material:	PVC, CPVC, PP, PVDF
Size Range:	1/2", Metric 16mm & 20mm
Pressure:	90 psi
Diaphragm:	EPDM, Viton® (FKM), or PTFE (EPDM backed)
Control Style:	Manual Handwheel or Pneumatically Actuated
End Connections:	True Union (Socket) Socket (Metric) Spigot (Metric)

ASTM D1784 ASTM D4101-86 **ASTM D3222 ASTM D2466 ASTM D2467** ASTM F439

ISO 3609 ISO 10931

Sample Specification

1.0 Diaphragm Valves - CM

1.1 Material

- The valve body, including end connectors and unions shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.
- or The valve body, including end connectors and unions shall be made of Corzan® CPVC compound which shall meet or exceed the requirements of 23447 according to ASTM D1784.
- or The valve body, including end connectors and unions shall be made of stabilized PP homopolymer compound, also containing a RAL 7032 pigment, which shall meet or exceed the requirements of Type I Polypropylene according to ASTM D4101-86.
- or The valve body, including end connectors and unions shall be made of virgin, non-regrind PVDF compound which shall meet or exceed the requirements of Table 1 according to ASTM D3222.
- These compounds shall comply with standards that are equivalent to NSF Standard 61 for potable water.
- The valve bonnet assembly shall be made of reinforced polyamide (nylon).

1.2 Diaphragm

- The diaphragm shall be made of EPDM which shall comply with standards that are equivalent to NSF Standard 61 for potable water.
- or The diaphragm shall be made of Viton® (FKM) which shall comply with standards that are equivalent to NSF Standard 61 for potable water.
- or The diaphragm shall be made of PTFE (backed with EPDM) which shall comply with standards that are equivalent to NSF Standard 61 for potable water.
- **1.3** All other wetted and non-wetted parts of the valves shall comply with standards that are equivalent to NSF Standard 61 for potable water.

2.0 Connections

2.1 Socket style

- The IPS socket PVC end connectors shall conform to the dimensional standards ASTM D2466 and ASTM D2467.
- or The IPS socket CPVC end connectors shall conform to the dimensional standard ASTM F439.
- or The Metric socket PP end connectors shall conform to the dimensional standard ISO 3609.
- or The Metric socket PVDF end connectors shall conform to the dimensional standard ISO 10931.

2.2 Spigot style

- The Metric spigot PP end connectors shall conform to the dimensional standard ISO 3609.
- or The Metric spigot PVDF end connectors shall conform to the dimensional standard ISO 10931.

3.0 Design Features

- All valves shall be weir-style for throttling applications.
- All bodies to be used with EPDM or Viton® diaphragms shall feature raised molded sealing rings (concentric).
- All bodies to be used with PTFE diaphragms shall be machined flat.
- All PTFE diaphragms shall feature a raised molded ring to combine sealing performance and longer life.
- All through bolts shall be made of 304 stainless steel.
- Bolts will thread directly into integrally molded brass inserts in the bonnet.
- All manual valves shall have a rising position indicator.
- Bodies of all sizes and materials shall have mounting brass inserts.

3.1 Actuators

- All actuators shall be made of reinforced polyamide (nylon).
- All actuators shall feature a smooth top (no nut holes) for cleanliness.
- The edge of the actuator membrane shall be inside of the actuator protective housing.
- All springs shall be cut from spring grade steel for maximum memory life and epoxy coated for maximum chemical resistance.
- The following accessories shall be available for all actuators: position indicator, stroke limiter, stroke limiter with position indicator, limit switch, limit switch box, 3-15 psi positioner, 4-20 mA positioner, solenoid pilot valve.

3.2 Pressure Rating

All valves shall be rated at 90 psi at 73°F.

3.3 Markings

 All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.4 Color Coding

- All PVC valves shall be color-coded dark gray.
- or All CPVC valves shall be color-coded light gray.
- or All PP valves shall be color-coded beige gray.
- or All PVDF valves shall not be color-coded and be white in appearance.

4.0 All valves shall be Xirtec® PVC, Xirtec® CPVC, PP or PVDF by IPEX or approved equal.

VALVES

CM SERIES COMPACT DIAPHRAGM VALVES

Valve Selection

V 1 0:	5 1	Diaphragm Material	IPEX Part	Pressure	
Valve Size (inches)			Manual True Union	Pneumatic True Union	Rating @ 73°F
PVC 1/2 CPVC		EPDM	054127	054151	
	PVC	Viton®	054129	054152	
		PTFE	054131	054153	
	CPVC	EPDM	054128	054154	90 psi
		Viton®	054130	054155	
		PTFE	054132	054156	

Valve Size	Body	Diaphragm	IPEX Pai	Pressure	
(mm)	Material	Material	Manual Socket	Pneumatic Socket	Rating @ 73°F
		EPDM	054133	054157	
	PP PVDF	Viton®	054136	054160	
		PTFE	054139	054163	
16		EPDM	054142	054166	90 psi
		Viton®	054145	054169	
		PTFE	054148	054172	

Valve Size	Body	Diaphragm	IPEX Pai	Pressure	
	Material	Material	Manual Spigot	Pneumatic Spigot	Rating @ 73°F
		EPDM	054134	054158	
	PP PVDF	Viton®	054137	054161	
		PTFE	054140	054164	
20 —		EPDM	054143	054167	90 psi
		Viton®	054146	054170	
		PTFE	054149	054173	

Valve Size	Body	Diaphragm	IPEX Par	Pressure	
(mm)	Material	Material	Manual True Union	Pneumatic True Union	Rating @ 73°F
		EPDM	054135	054159	
	PP	Viton®	054138	054162	
20 —		PTFE	054141	054165	
		EPDM	054144	054168	90 psi
	PVDF	Viton®	054147	054171	
	PTFE	PTFE	054150	054174	

Body Material:

PVC	PP
CPVC	PVDF

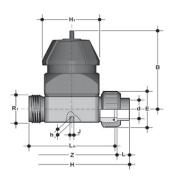
Size:

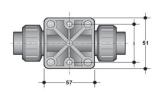
	1/2"	20mm
П	16mm	

Diaphragm:

	EPDM
	Viton® (FKM)
П	PTFF

Control Style:

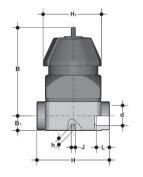

Manual Handwhee
Pneumatic
(Normally Closed)

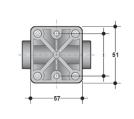

End Connections:

True Union (Socket
Socket
Spigot

IPEX Part Number:

Dimensions - Manual Control

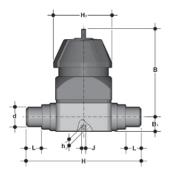

True Union Connections

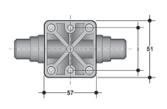

Dimension (inches)

Size	Н	Z	L	LA	R ₁	E
1/2"	5.10	3.84	0.63	3.54	1"	1.61
20mm	5.10	3.84	0.63	3.54	1"	1.61

Dimension (inches)

Size	В	H ₁		J	
1/2"	3.33	2.32	0.31	M5	1.38
20mm	3.33	2.32	0.31	M5	1.38

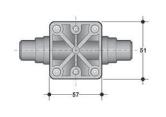



Socket Connections

		/.	. \
1)im	ension	line	hac

Size	d	Н	L	B ₁	В
16mm	0.68	2.95	0.55	0.59	3.33

	Dir	<u>nension (inch</u>	es)	
Size	H ₁		J	
16mm	2.32	0.31	M5	1.38


Spigot Connections

Dimension (inches)

Size	d	Н	L	B ₁	В
20mm	0.84	4.88	0.67	0.59	3.33

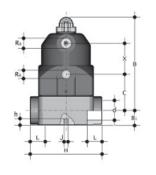
Dimension (inches)				
Size	H ₁		J	
20mm	2.32	0.31	M5	1.38

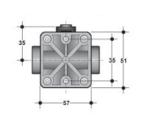
New Manual Bonnet

Note: As of July 2005, all new CM Manual valves are assembled with the bonnet shown on the side. The dimensions of the valve body and connections remain the same.

Dimensions - Pneumatic Control

R₃


True Union Connections

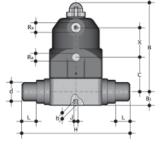

Dimension (inches)

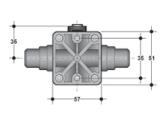
Size	d	L_A	L _B	R ₁	E	В
1/2"	0.84	3.54	3.78	1	1.61	3.86
20mm	0.84	3.54	3.78	1	1.61	3.86

Dimension (inches)

Size	С	Χ	Rα		J
1/2"	1.50	1.34	1/8	0.31	M5
20mm	1.50	1.34	1/8	0.31	M5

Socket Connections


Dimension (inches)


Size	d	Н	L	B ₁	В
16mm	0.68	2.95	0.55	0.59	3.86

Dimension (inches)

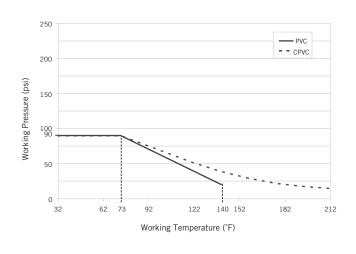
Size	С	Х	Rα		J
16mm	1.50	1.34	1/8	0.31	M5

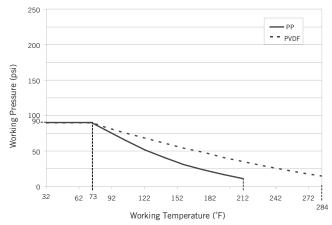
Spigot Connections

Dimension (inches)						
Size	d	Н	L	B ₁	В	
20mm	0.84	4.88	0.63	0.49	3.86	
Dimension (inches)						

Size	С	Х	R₀	h	J
16mm	1.50	1.34	1/8	0.31	M5

Weights

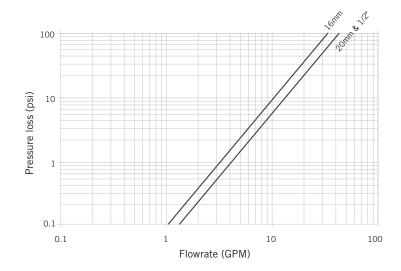

Approximate Weight (lbs) - Manual Control


	Style	Size	PVC	CPVC	PP	PVDF
True Union	م منطا میں	1/2"	0.63	0.64	-	-
	20mm	-	-	0.54	0.69	
	Socket	16mm	-	-	0.52	0.64
	Spigot	20mm	-	-	0.58	0.75

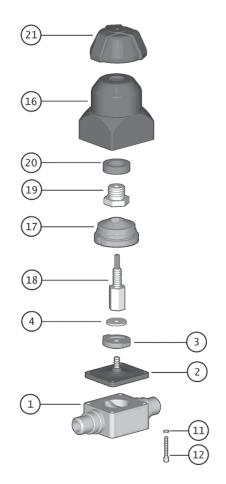
Approximate Weight (lbs) - Pneumatic Control

ı	Style	Size	PVC	CPVC	PP	PVDF
True Union	1/2"	0.69	0.71	-	-	
	20mm	-	-	0.61	0.75	
	Socket	16mm	-	-	0.59	0.71
	Spigot	20mm	_	_	0.65	0.82

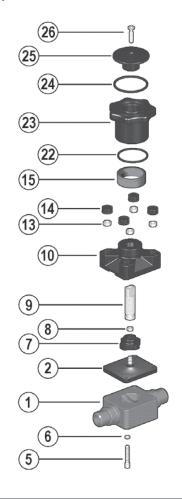
Pressure - Temperature Ratings



Flow Coefficients


Size	C _V
16mm	3.29
20mm	4.20
1/2"	4.20

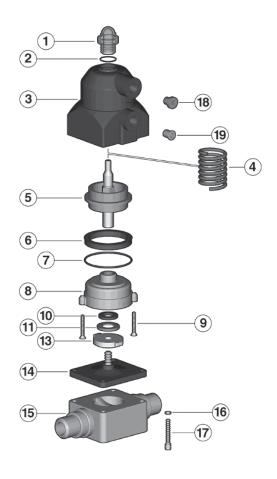
Pressure Loss Chart



Components

Manual Control

New Bonnet



#	Component	Material	Qty
* 1	valve body	PVC / CPVC / PP / PVDF	1
2	diaphragm	EPDM / Viton® / PTFE	1
3	compressor	polyamide	1
4	washer	zinc plated steel	1
11	washer	SS	4
12	bolt	zinc plated steel	4
16	cover	polyamide	1
17	guide	polyamide	1
18	indicator – stem	brass	1
19	bushing	zinc plated steel	1
20	bonnet	brass	1
21	handwheel	GRPP	1

#	Component	Material	Qty
* 1	valve body	PVC / CPVC / PP / PVDF	1
2	diaphragm	EPDM / Viton® / PTFE	1
5	bolt	SS	4
6	washer	SS	4
7	compressor	GRPP	1
8	nut	SS	1
9	stem	SS	1
10	bonnet	GRPP	1
13	nut	SS	4
14	protective cap	POM	4
15	position indicator	PVDF	1
22	o-ring	NBR	1
23	handwheel	GRPP	1
24	o-ring	NBR	1
25	handwheel plate	GRPP	1
26	bolt	SS	1

^{*} Spare parts available. Contact IPEX for availability of spare components for True Union style valves.

Pneumatic Control

#	Component	Material	Qty
1	protective cap	PVC	1
2	o-ring	NBR	1
3	cover	polyamide	1
4	spring1	steel	1
5	stem – piston	SS - polyamide	1
6	gasket2	NBR	1
7	o-ring	NBR	1
8	guide	polyamide	1
9	bolt	zinc plated steel	2
10	gasket	NBR	1
11	washer	zinc plated steel	1
12	washer	zinc plated steel	1
13	compressor	polyamide	1
14	diaphragm	EPDM / Viton® / PTFE	1
* 15	valve body	PVC / CPVC / PP / PVDF	1
16	washer	zinc plate steel	4
17	bolt	SS	4

- * Spare parts available. Contact IPEX for availability of spare components for True Union style valves.

 for NC and NO versions only.
- ² o-ring for DA version.

Installation Procedures

- 1. The valve may be installed in any position or direction.
- 2. Please refer to the appropriate connection style sub-section:
 - a. For true union style, remove the union nuts and slide them onto the pipe.
 - i. For socket style, solvent cement the end connectors onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Ensure that excess solvent does not run into the body of the valve. Be sure to allow sufficient cure time before continuing with the valve installation.
 - ii. For threaded style, thread the end connectors onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
 - iii. Ensure that the socket o-rings are properly fitted in their grooves then carefully place the valve in the system between the two end connections.
 - iv. Tighten both union nuts. Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Over-tightening may damage the threads on the valve body and/or the union nut, and may even cause the union nut to crack.
 - b. For socket style, solvent cement the pipe into the end connections of the valve. For correct joining procedure, please refer to the section entitled, "Joining Methods Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Ensure that excess solvent does not run into the body of the valve. Be sure to allow sufficient cure time before continuing with the valve installation.
 - c. For spigot style, solvent cement each pipe onto the ends of the valve body. Ensure that excess solvent does not run into the body of the valve.
- 3. If anchoring is required, fix the valve to the supporting structure using the mounting holes on the bottom of the valve body.

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the line. Be sure to depressurize and drain the valve and isolated branch.
- If necessary, detach the valve from the support structure by disassembling the threaded connections on the bottom of the valve body.
- Please refer to the appropriate connection style subsection:
 - a. For true union connections, loosen both union nuts and drop the valve out of the line. If retaining the socket o-rings, take care that they are not lost when removing the valve from the line.
 - b. For socket style, cut the pipe on either side of the valve and remove from the line.
 - c. For spigot style, cut the pipe on either side of the valve and remove from the line.
- Loosen and remove the bolts and washers from the bottom of the valve body. Removal of protective caps is necessary to access the nuts on the manual version.
- Loosen and remove the diaphragm from the compressor assembly
- Rotate the handwheel clockwise until the stemcompressor assembly is released.
- The valve components can now be checked for problems and/or replaced.

Note: It is not recommended to attempt to further disassemble the handwheel/bonnet assembly as it may cause irreversible damage to the components.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- Insert the stem-compressor assembly into the bonnet and tighten by threading in a counterclockwise (lefthand thread) direction. Ensure that the guide tabs on the bonnet line up with the compressor grooves before cycling the handwheel to further retract the compressor.
- Insert the diaphragm into the compressor and turn in a clockwise direction until sufficiently tight. Ensure that the tab lines up with the notched side of the bonnet then cycle the handwheel counterclockwise until the diaphragm is fully retracted.
- Place the bonnet and diaphragm onto the valve body taking care to properly line up the sealing surfaces.
- Insert the bolts and washers and tighten in an even (cross-like) pattern.
- 5. For the manual version, replace the protective caps on the nuts.

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

NOTES

SECTION FIVE: CHECK AND VENT VALVES

SXE SERIES CHECK VALVES

The IPEX EasyFit SXE Series Ball Check Valves represent the latest innovation in thermoplastic valve manufacturing technology. The SXE introduces an advanced method of installation, providing trouble free service for industrial, OEM and water service applications. This popular style of check valve features a true union design allowing for easy removal and maintenance of the valve without disturbing the rest of the pipe assembly. Positive shutoff of the valve in both vertical and horizontal installations is achieved with just 3 psi of back pressure. The innovative SXE EasyFit design features a custom labelling system, and the optional EasyFit multifunctional handle allows for union nut rotational control and safe blocked carrier tightening.

SXE Ball Check Valves are part of our complete system of IPEX pipe, valves and fittings, engineered and manufactured to our strict quality, performance and dimensional standards.

VALVE AVAILABILITY

Body Material	PVC, CPVC		
Size Range	1/2" through 4"		
Pressure	232 psi		
Seals	EPDM or Fluoropolymer (FKM)		
End Connections	Socket (IPS),Threaded (FNPT)		

ASTM D1784 ASTM F441 ASTM D2464 ASTM D2466 ASTM D2467 ASTM F439 ASTM F437 ASTM F1498

ANSI B1.20.1 ANSI B16.5

SXE SERIES CHECK VALVES

Sample Specification

1.0 Check Valves - SXE

1.1 Material

- The valve body, ball, end connectors, and unions shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.
- or The valve body, ball, end connectors, and unions shall be made of Corzan CPVC compound which shall meet or exceed the requirements of 23447 according to ASTM D1784.

1.2 Seals

- The o-ring seals shall be made of EPDM.
- or The o-ring seals shall be made of FKM.

2.0 Connections

2.1 Socket style

- The IPS socket PVC end connectors shall conform to the dimensional standards ASTM D2466 and ASTM D2467.
- or The IPS socket CPVC end connectors shall conform to the dimensional standard ASTM F439.

2.2 Threaded style

- The female NPT threaded PVC end connectors shall conform to the dimensional standards ASTM D2464, ASTM F1498, and ANSI B1.20.1.
- or The female NPT threaded CPVC end connectors shall conform to the dimensional standards ASTM F437, ASTM F1498, and ANSI B1.20.1.

3.0 Design Features

- The valve shall have true union ends.
- The valve cavity shall feature an optimized profile design to reduce ressure drop and improve the Cv value
- The valve cavity shall feature full body guide ribs to reduce chatter and improve seal quality.
- The ball shall be fully machined to achieve high surface finish and accurate dimensional tolerance.
- The valve body and union nuts shall have deep square style threads for increased strength.

- The Main-seal carrier shall be a safe blocked design and allow for safe disconnection of the union nuts for maintenance. The main-seal carrier shall be compatible with the EasyFit multifunctional handle and EasyFit Torque Wrench (1/2" - 2" valves) for precise component tightening.
- The union nuts shall be compatible with the EasyFit multifunctional handle and EasyFit Torque Wrench (1/2" - 2" valves) for precise tightening.
- The valve shall have a transparent plug housing for use with EasyFit Labelling System for valve identification.

3.1 Pressure Rating

- All valves shall be rated at 232 psi at 73°F.
- All valves shall be suitable for use with liquids having a specific gravity less than 0.05 lb/in3.

3.2 Markings

All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.3 Color Coding

- All PVC valves shall be color-coded dark gray.
- or All CPVC valves shall be color-coded light gray.

4.0 NSF Listings

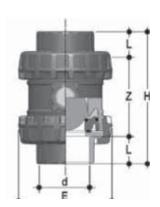
- 1/2" to 2" valves shall be listed with NSF to Standard 61 for potable water.
- 1/2" to 2" valves shall be listed with NSF to Standard 372 for lead content requirements.
- 5.0 All valves shall be Xirtec® PVC or Xirtec® CPVC by IPEX or approved equal.

SXE SERIES CHECK VALVES

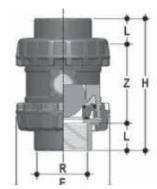
Valve Selection

Size (inches)	Body Material	O-ring Material	IPEX Part Number IPS FNPT	Pressur Rating	Body Material:
		EPDM	Socket Threadec 052013		☐ CPVC
1/2	PVC	FKM	052022		
		EPDM	052121		Size (inches):
	CPVC	FKM	052127		
3/4		EPDM	052014		
	PVC	FKM	052023		□ 3/4 □ 2-1/2 □ 1 □ 3 □ 1-1/4 □ 4 □ 1-1/2
	001/0	EPDM	052122		
	CPVC	FKM	052128		
	D) (O	EPDM	052015		
	PVC	FKM	052027		
1	CDVC	EPDM	052123		Seals:
	CPVC	FKM	052133		
	PVC	EPDM	052016		□ EPDM
1-1/4	PVC	FKM	052028		☐ Fluoropolymer® (FKM)
1-1/4	CPVC	EPDM	052124		
	CFVC	FKM	052134		
	PVC	EPDM	052017		End Connections:
1-1/2	FVC	FKM	052030		
	CPVC	EPDM	052125	232 psi	□ Socket (IPS)
	C1 VC	FKM	052135		□ Threaded (FNPT)
	PVC	EPDM	052018		
2	1 0	FKM	052120		
۷	CPVC	EPDM	052126		IPEX Part Number:
		FKM	052136	_	
2-1/2	PVC	EPDM	052478 –		
		FKM	052481 –		
	CPVC	EPDM	052484 –		
		FKM	052487 –		
3	PVC	EPDM	052479 –		
	1 00	FKM	052482 –		
	CPVC	EPDM	052485 –		
	OF VC	FKM	052488 –		
4	PVC	EPDM	052480 –		
	FVC	FKM	052483 –		
	CPVC	EPDM	052486 –		
	CF VC	FKM	052489 –		

Dimensions


SXF	IDS	Socket	(inches)
JAL	IL O	SUCKEL	

Size	d	L	Z	н	Е
1/2	0.84	0.89	2.01	3.78	2.13
3/4	1.05	1.00	2.13	4.13	2.48
1	1.315	1.13	2.34	4.61	2.83
1-1/4	1.66	1.26	2.83	5.35	3.35
1-1/2	1.9	1.38	3.03	5.79	3.94
2	2.38	1.50	3.84	6.85	4.65


SXE NPT Female (inches)

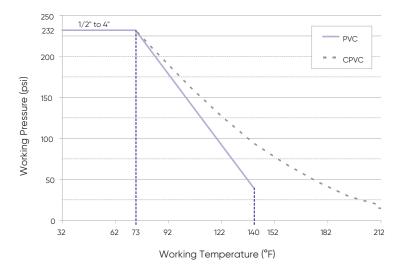
Size	R	L	Z	н	E	
1/2	1/2-NPT	0.70	2.14	3.54	2.13	
3/4	3/4-NPT	0.71	2.24	3.66	2.48	
1	1-NPT	0.89	2.55	4.33	2.83	
1-1/4	1-1/4-NPT	0.99	3.02	5.00	3.35	
1-1/2	2 1-1/2-NPT	0.97	3.21	5.16	3.94	
2	2-NPT	1.17	4.01	6.34	4.65	
1-1/2	2 1-1/2-NPT	0.97	3.21	5.16	3.94	

SXE IPS Socket (inches)

Size	d	L	Z	Н	E
2-1/2	2.875	1.75	4.80	8.31	6.18
3	3.5	1.89	5.98	9.76	6.85
4	4.5	2.26	6.61	11.14	8.35

SXE NPT Female (inches)

Size	R	L	Z	н	E
2-1/2	2-1/2-NPT	1.31	5.69	8.31	6.18
3	3-NPT	1.40	6.97	9.76	6.85
4	4-NPT	1.48	8.18	11.14	8.35

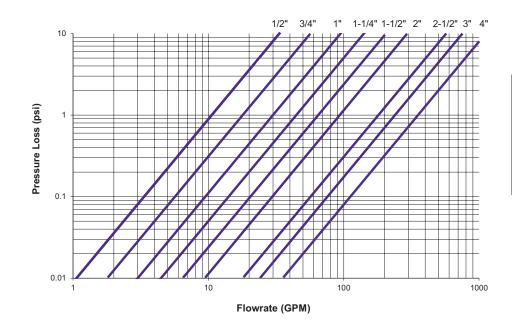

Weights

4

PVC CPVC 1/2 0.33 0.33 0.33 0.33 3/4 0.42 0.42 0.42 0.42 1 0.66 0.66 0.66 0.66 1-1/4 1.01 1.01 1.01 1.01 1-1/21.49 1.49 1.49 1.49 2 2.38 2.38 2.38 2.38 2-1/2 5.74 5.74 3 7.28 7.28

12.72

Pressure - Temperature Ratings



Flow Coefficients

12.72

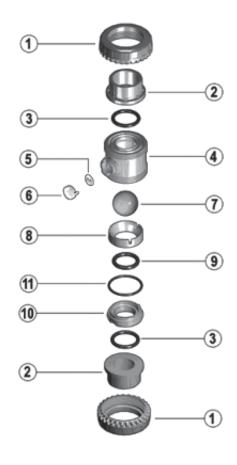
Size	C _v
1/2	10.6
3/4	17.9
1	30.0
1-1/4	44.6
1-1/2	64.4
2	93.2
2-1/2	179.4
3	238.9
4	353.3

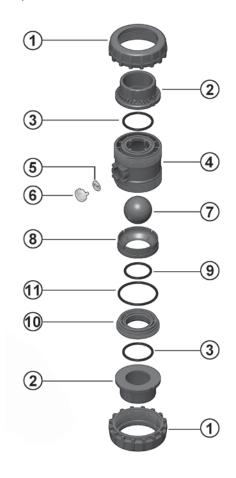
Pressure Loss Chart

Customize SXE EasyFit

It is often necessary to customize a valve by labelling or tagging it in order to mark, protect and identify it.

SXE EasyFit valves are therefore equipped with a plastic water-resistant module designed to meet this specific need. The module is composed of a transparent PVC service plug and a white circle tag holder, with IPEX branded on one side. The tag holder is embedded in the plug and can be easily removed to be used for self labelling on its blank side. Self labelling can be done in several ways, but we recommend designing and printing custom labels through the EasyFit Labelling System (LSE).




Please contact IPEX customer service for options and pricing on customization of SXE valves with LSE sets.

Components

1/2" to 2"

2-1/2" to 4"

#	Component	Material	Qty
1	Union Nut	PVC	2
2	End Connector	PVC	2
3	Socket Seal (O-ring)	EPDM, FKM	2
4	Body	PVC	1
5	Tag Holder	PVC	1
6	Transparent Service Plug	PVC	1
7	Ball	PVC	1
8	Packing-presser Ring	PVC	1
9	Ball Seal (O-ring)	EPDM, FKM	1
10	Support for Ball Seat	PVC	1
11	Radial Seal (O-ring)	EPDM, FKM	1

Installation Procedures

- 1. For socket and threaded style connections, remove the union nuts (part #1 on previous page) and slide them onto the pipe. It is important to first check the pipe flow direction and corresponding valve orientation as installing the valve backward will prevent it from functioning as intended.
- 2. Please refer to the appropriate connection style sub-section:
 - a. For socket style, solvent cement the end connectors (2) onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods - Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Be sure to allow sufficient cure time before continuing with the valve installation.
 - b. For threaded style, thread the end connectors (2) onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods - Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
- Ensure that the valve is in the correct orientation, and that the main seal safe blocked carrier and o-rings are properly fitted in the valve. A flow direction indicator is located on the side of the valve body. Carefully place the valve in the system between the two end connections.
- Tighten both union nuts by hand. Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. If additional tightening is required, use the EasyFit multifunctional handle tool to tighten the union nuts an additional 1/4 turn. The Easyfit torque wrench (available as an accessory for 1/2" - 2" valves) may also be used to complete the nut tightening in accordance to the torques indicated on instructions included; following this procedure will ensure the best installation.

Over-tightening may damage the threads on the valve body and/or the union nut, and may even cause the union nut to crack. It is recommended to use the EasyFit handle to prevent damage.

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest
 of the system. Be sure to depressurize and drain the isolated branch and valve
 before continuing.
- Loosen both union nuts (1) and drop the valve out of the line. If retaining the socket o-rings (3), take care that they are not lost when removing the valve from the line.
 - a. For 1/2" to 2" valves, remove the transparent service plug from the EasyFit multifunctional handle tool. Turn the handle over and seat on the top of the valve, ensuring the integrated gear teeth on the handle mesh with the union nut teeth. Turn clockwise to loosen.
 - b. For 2-1/2" to 4" valves, remove the EasyFit multifunctional tool from the bottom of the handle, turn it over and re-install it. Engage the tool with the outer ring profile of the union nut and loosen.
- 3. To disassemble, locate the main seal carrier adjustment tool on the multifunctional handle. This is found on the bottom of 1/2" to 2" handles and on the top of 2-1/2" to 4" handles.
- Line up the moldings on the handle with the slots in the main seal carrier.
 Loosen and remove the main seal carrier (10) by turning it in a counter-clockwise direction.
- 5. Remove the Radial Seal (11), Ball Seal (9), Packing-presser Ring (8), and the Ball (7).
- 6. The valve components can now be checked for problems and/or replaced.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. **Be sure to consult the "IPEX Chemical Resistance Guide"** and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- Insert the Remove the Ball (7), Packing-presser Ring (8), Ball Seal (9), and the Radial Seal (11) in the valve body.
- Slightly hand tighten the main seal carrier (10) into the valve body. Line up the
 moldings on the handle with the slots in the main seal carrier then tighten by turning
 in a clockwise direction. The Easyfit torque wrench key can also be used to tighten
 the main seal carrier in accordance with the tightening torque values indicated on
 the included instructions.
- 3. Properly fit the socket o-rings (3) in their respective grooves.
- 4. Place the end connectors (2) into the union nuts (1), then thread onto the valve body taking care that the socket o-rings remain properly fitted in their grooves.
 - a. For 1/2" to 2" valves, remove the transparent service plug from the EasyFit multifunctional handle tool. Turn the handle over and seat on the top of the valve, ensuring the integrated gear teeth on the handle mesh with the union nut teeth. Turn counter-clockwise to tighten. The Easyfit torque wrench can also be used to tighten the union nuts in accordance with the tightening torque values indicated on the included instructions.
 - b. For 2-1/2" to 4" valves, remove the EasyFit multifunctional tool from the bottom of the handle, turn it over and re-install it. Engage the tool with the outer ring profile of the union nut and tighten.

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important Points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

The IPEX EasyFit SSE Series Spring Assisted Check Valves represent the latest innovation in thermoplastic valve manufacturing technology. The all new SSE complements our SXE ball check valves, which introduce an advanced method of installation, providing trouble free service for industrial, OEM and water service applications. The internal profile of the SSE, combined with the spring assisted contoured ball, gives the advantage of trouble-free vertical and horizontal installations, even if only very low backpressure is available. The innovative SSE EasyFit design features a custom labelling system, and the EasyFit multifunctional handle allows for union nut rotational control and safe blocked carrier tightening. SSE Spring Assisted Check Valves are part of our complete system of IPEX pipe, valves and fittings, engineered and manufactured to our strict quality, performance and dimensional standards.

VALVE AVAILABILITY

Body Material	PVC
Size Range	1/2" through 4"
Pressure	232 psi
Seals	EPDM or Fluoropolymer (FKM)
Spring Material	1/2" through 4" 316 Stainless Steel (SS), 1-1/4" through 4" PTFE Encapsulated 316SS 1/2" through 1" Hastelloy®
End Connections	Socket (IPS), Threaded (FNPT)

Sample Specification

1.0 Check Valves - SSE

1.1 Material

 The valve body, ball, end connectors, and unions shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.

1.2 Seals

- · The o-ring seals shall be made of EPDM.
- or The o-ring seals shall be made of FKM.

1.3 Spring Material

- The spring material shall be made of 316SS.
- or The spring material shall be made of PTFE encapsulated 316SS.
- or The spring material shall be made of Hastelloy®.

2.0 Connections

2.1 Socket style

 The IPS socket PVC end connectors shall conform to the dimensional standards ASTM D2466 and ASTM D2467.

2.2 Threaded style

 The female NPT threaded PVC end connectors shall conform to the dimensional standards ASTM D2464, ASTM F1498, and ANSI B1.20.1.

3.0 Design Features

- The valve shall have true union ends.
- The valve cavity shall feature an optimized profile design to reduce pressure drop and improve the Cv value
- The valve body and union nuts shall have deep square style threads for increased strength.
- The Main-seal carrier shall be a safe blocked design and allow for safe disconnection of the union nuts for maintenance. The main-seal carrier shall be compatible with the EasyFit multifunctional handle for precise component tightening. (2-1/2" – 4" valves)
 - The union nuts shall be compatible with the EasyFit multifunctional handle and EasyFit Torque Wrench (1/2" – 2" valves) for precise tightening.
 - The valve shall have a transparent plug housing for use with EasyFit Labelling System for valve identification.

3.1 Pressure Rating

- All valves shall be rated at 232 psi at 73°F.
- All valves shall be suitable for use with liquids having a specific gravity less than 0.05 lb/in³.

3.2 Markings

 All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.3 Color Coding

- · All PVC valves shall be color-coded dark gray.
- **4.0** All valves shall be Xirtec® PVC by IPEX or approved equal.

VALVES

SSE SERIES SPRING ASSISTED CHECK VALVES

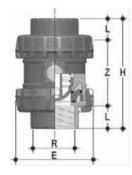
Valve Selection

	_			Socket	:/Threaded	S	ocket	Б.	ali a NA art a starla	
Size	Body) Material	Seal Material	Spring	Product	Universal	Product	Universal	Во	dy Material:	
(IIICIICS	, Material	Material	Material	Code	Number	Code	Number		PVC	
		EDDM	316SS	052490	SSEBV103S	-	-			
		EPDM	Hastelloy PTFE/316SS	052152	SSEBV103H -	_	_			
1/2	PVC		316SS	052499	SSEBV203S	_	_	Siz	e (inches):	
		FKM	Hastelloy	052163	SSEBV2033	_	_	312	e (inches).	
		1 101 1	PTFE/316SS	-	- -	_	_		1/2 🗆 2	
			316SS	052491	SSEBV104S	_	_		3/4 □ 2-1/2)
		EPDM	Hastelloy	052153	SSEBV104H	_	_		1 🗆 3	
7//	D) (O		PTFE/316SS	_	_	-	_		1-1/4 🔲 4	
3/4	PVC		316SS	052500	SSEBV204S	-	_		1-1/2	
		FKM	Hastelloy	052177	SSEBV204H	_	_		,	
			PTFE/316SS	-	_	-	_			
			316SS	052492	SSEBV105S	-	_	Sa	als:	
		EPDM	Hastelloy	052154	SSEBV105H	-	_	56	dis.	
1	PVC		PTFE/316SS		_		_		EPDM	
1	FVC		316SS	052501	SSEBV205S	-	_		Fluoropolymer® (FKM)	
		FKM	Hastelloy	052178	SSEBV205H	-	-			
			PTFE/316SS	_	_		_			
			316SS	052493	SSEBV106S	-	-	_		
		EPDM	Hastelloy	_	_	-	_	Sp	ring Material:	
1-1/4	PVC		PTFE/316SS	052347	SSEBV106P		_		316SS	
,			316SS	052502	SSEBV206S	-	_		PTFE/316SS	
		FKM	Hastelloy	-	-	_	_		Hastelloy®	
			PTFE/316SS	052362	SSEBV206P		_	ш	nastelloy	
		EDDM	316SS	052494	SSEBV107S	-	_			
		EPDM	Hastelloy	- 0527/0	- CCED\/107D	_	_	_		
1-1/2	PVC		PTFE/316SS 316SS	052348	SSEBV107P		_	En	d Connections:	
		FKM	Hastelloy	052503	SSEBV207S	_	_		Socket (IPS)	
		LINIT	PTFE/316SS	052396	SSEBV207P	_	_		Threaded (FNPT)	
			316SS	052495	SSEBV108S	_	_	_		
		EPDM	Hastelloy	-	-	_	_			
			PTFE/316SS	052358	SSEBV108P	_	_			
2	PVC		316SS	052504	SSEBV208S	_	_	IPF	X Part Number:	
		FKM	Hastelloy	-	_	_	-			
			PTFE/316SS	052397	SSEBV208P	-	_			
			316SS	_	_	052496	SSEAV109S			
		EPDM	Hastelloy	-	_	-	_			
2-1/2	DVC		PTFE/316SS		_	052359	SSEAV109P			
2 1/2	1 00		316SS	-	-	052505	SSEAV209S			
		FKM	Hastelloy	-	_	-	-			
			PTFE/316SS	_	_	052398	SSEAV209P			
			316SS	-	_	052497	SSEAV110S			
		EPDM	Hastelloy	-	-	-	-			
3	PVC		PTFE/316SS			052360	SSEAV110P			
		FIZNA	316SS	-	_	052506	SSEAV210S			
		FKM	Hastelloy	_	_	_ 	- CCEAV/210D			
			PTFE/316SS	_	-	052399	SSEAV210P			
		EPDM	316SS Hastelloy		_	052498 –	SSEAV111S			
		ᄕᄼᄓᅦᅦ	PTFE/316SS	_	_	052361	SSEAV111P			
4	PVC		316SS			052507	SSEAV111P SSEAV211S			
		FKM	Hastelloy	_	_	-	-			
		. 1811	PTFE/316SS	_	-	052414	SSEAV211P			
			,							

Valve Selection

SSE IPS Socket (inches)

Size	d	L	Z	Н	E
1/2	0.84	0.89	2.01	3.78	2.13
3/4	1.05	1.00	2.13	4.13	2.48
1	1.315	1.13	2.34	4.61	2.83
1-1/4	1.66	1.26	2.83	5.35	3.35
1-1/2	1.9	1.38	3.03	5.79	3.94
2	2.375	1.50	3.84	6.85	4.65
2-1/2	2.875	1.75	4.8	8.31	6.18
3	3.5	1.89	5.98	9.76	6.85
4	4.5	2.26	6.61	11.14	8.35



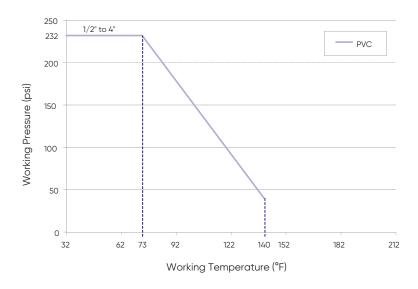
SSE NPT Female (inches)

Size	d	L	Z	Н	Е
1/2	1/2-NPT	0.70	2.14	3.54	2.13
3/4	3/4-NPT	0.71	2.24	3.66	2.48
1	1-NPT	0.89	2.55	4.33	2.83
1-1/4	1-1/4-NPT	0.99	3.02	5.00	3.35
1-1/2	1-1/2-NPT	0.97	3.21	5.16	3.94
2	2-NPT	1.17	4.01	6.34	4.65
2-1/2	2-1/2-NPT	1.31	5.69	8.31	6.18
3	3-NPT	1.4	6.97	9.76	6.85
4	4-NPT	1.48	8.18	11.14	8.35

Weights

Approximate Weight (lbs)

C:	P'	VC
Size	IPS Socket	FNPT Threaded
1/2	0.33	0.33
3/4	0.41	0.41
1	0.64	0.64
1-1/4	0.98	0.98
1-1/2	1.41	1.41
2	2.23	2.23
2-1/2	5.47	5.47
3	6.81	6.81
4	11.84	11.84


Minimum Back Pressure to Seal

Size	1/2	3/4		1-1/4	1-1/2	2	2-1/2	3	4
psi	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16

Minimum Pressure to Open Spring

Size	1/2	3/4		1-1/4	1-1/2	2	2-1/2	3	
psi	1.99	1.00	0.71	0.71	0.71	0.43	0.21	0.21	0.21

Pressure

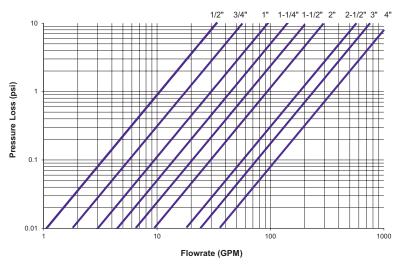
Flow Coefficients

The flow coefficient (C_v) represents the flow rate in gallons per minute (GPM) at 68°F for which there is a 1 psi pressure drop across the valve in the fully open position. These values are determined from an industry standard testing procedure which uses water as the flowing media (specific gravity of 1.0). To determine specific flow rate and pressure loss scenarios, one can use the following formula:

$$f = sg \ \mathsf{X} \left(\frac{Q}{C_V} \right)^2$$

Where,

f is the pressure drop (friction loss) in psi,


sg is the specific gravity of the fluid,

Q is the flow rate in GPM,

C_V is the flow coefficient.

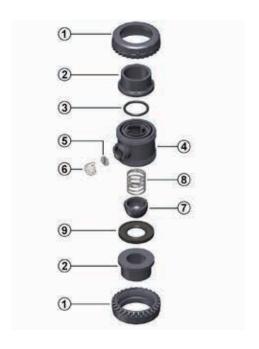
Size	C _v
1/2	10.6
3/4	17.9
1	30.0
1-1/4	44.6
1-1/2	64.4
2	93.22
2-1/2	179.4
3	238.9
4	353.3

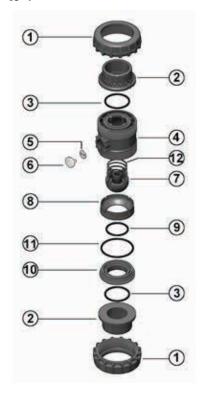
Pressure Loss Chart

Customize SSE EasyFit

It is often necessary to customize a valve by labelling or tagging it in order to mark, protect and identify it.

SSE EasyFit valves are therefore equipped with a plastic water-resistant module designed to meet this specific need. The module is composed of a transparent PVC service plug and a white circle tag holder, with IPEX branded on one side. The tag holder is embedded in the plug and can be easily removed to be used for self labelling on its blank side. Self labelling can be done in several ways, but we recommend designing and printing custom labels through the EasyFit Labelling System (LSE).




Please contact IPEX customer service for options and pricing on customization of SSE valves with LSE sets.

Components

1/2" to 2"

2-1/2" to 4"

#	Component	Material	Qty
1	Union Nut	PVC	2
2	End Connector	PVC	2
3	Socket Seal (O-ring)	EPDM, FKM	1
4	Body	PVC	1
5	Tag Holder	PVC	1
6	Transparent Service Plug	PVC	1
7	Contoured Ball	PVC	1
8	Spring	316SS, PTFE/316SS, Hastelloy	1
9	Contoured Ball Seal (O-ring)	EPDM, FKM	1

#	Component	Material	Qty
1	Union Nut	PVC	2
2	End Connector	PVC	2
3	Socket Seal (O-ring)	EPDM, FKM	2
4	Body	PVC	1
5	Tag Holder	PVC	1
6	Transparent Service Plug	PVC	1
7	Contoured Ball	PVC	1
8	Packing Presser Ring	PVC	1
9	Contoured Ball Seal (O-ring)	EPDM, FKM	1
10	Support for Ball Seat	PVC	1
11	Radial Seal (O-ring)	EPDM, FKM	1
12	Spring	316SS, PTFE/316SS	1

Installation Procedures

- For socket and threaded style connections, remove the union nuts (part #1 on previous page) and slide them onto the pipe. It is important to first check the pipe flow direction and corresponding valve orientation as installing the valve backward will prevent it from functioning as intended.
- 2. Please refer to the appropriate connection style sub-section:
 - a. For socket style, solvent cement the end connectors (2) onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods - Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Be sure to allow sufficient cure time before continuing with the valve installation.
 - b. For threaded style, thread the end connectors (2) onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods - Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
- 3. Ensure that the valve is in the correct orientation, and that the main seal safe blocked carrier and o-rings are properly fitted in the valve. A flow direction indicator is located on the side of the valve body. Carefully place the valve in the system between the two end connections.
- 4. Tighten both union nuts by hand. Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. If additional tightening is required, use the EasyFit multifunctional handle tool to tighten the union nuts an additional 1/4 turn. The Easyfit torque wrench (available as an accessory for 1/2'' - 2'' valves) may also be used to complete the nut tightening in accordance to the torques indicated on instructions included; following this procedure will ensure the best installation.

Over-tightening may damage the threads on the valve body and/or the union nut, and may even cause the union nut to crack. It is recommended to use the EasyFit handle to prevent damage.

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the system. Be sure to depressurize and drain the isolated branch and valve before continuing.
- Loosen both union nuts (1) and drop the valve out of the line. If retaining the socket o-rings (3), take care that they are not lost when removing the valve from the line.
 - a. For 1/2" to 2" valves, remove the transparent service plug from the EasyFit multifunctional handle tool. Turn the handle over and seat on the top of the valve, ensuring the integrated gear teeth on the handle mesh with the union nut teeth. Turn clockwise to loosen.
 - b. For 2-1/2" to 4" valves, remove the EasyFit multifunctional tool from the bottom of the handle, turn it over and re-install it. Engage the tool with the outer ring profile of the union nut and loosen.
- 4. Line up the moldings on the handle with the slots in the main seal carrier. Loosen and remove the main seal carrier (10) by turning it in a counter-clockwise direction.
- 5. For 1/2" to 2" valves, remove the Radial Seal (11), Contoured Ball Seal (O-ring) (9), Packing-presser Ring (8), Contoured Ball (7), and the Spring (12)
- 6. For 2-1/2" to 4" valves, remove the Contoured Ball Seal (O-ring) (9), Contoured Ball (7), and the Spring (8).
- The valve components can now be checked for problems and/or replaced.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- For 1/2" to 2" valves, insert the Spring (8), Contoured Ball (7), and Contoured Ball Seal (O-ring) (9) in the valve body.
- For 2-1/2" to 4" valves, insert the Spring (12), Contoured Ball (7), Packing Presser Ring (8), Contoured Ball Seal (O-ring) (9), and the Radial Seal (11) in the valve body.
- 3. For 2-1/2" to 4" valves, slightly hand-tighten the main seal carrier (10) into the valve body. Line up the moldings on the handle with the slots in the main seal carrier then tighten by turning in a clockwise direction.
- Properly fit the socket o-rings (3) in their respective grooves.
- Place the end connectors (2) into the union nuts (1), then thread onto the valve body taking care that the socket o-rings remain properly fitted in their grooves.
 - a. For 1/2" to 2" valves, remove the transparent service plug from the EasyFit multifunctional handle tool. Turn the handle over and seat on the top of the valve, ensuring the integrated gear teeth on the handle mesh with the union nut teeth. Turn counter-clockwise to tighten. The Easyfit torque wrench key can also be used to tighten the union nuts in accordance with the tightening torque values indicated on the included instructions.
 - b. For 2-1/2" to 4" valves, remove the EasyFit multifunctional tool from the bottom of the handle, turn it over and re-install it. Engage the tool with the outer ring profile of the union nut and tighten.

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. **In any test or operating condition, it is important** to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important Points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

The IPEX VR Piston Check Valve is an ideal solution for process back-flow prevention. These valves feature all PVC high performance components allowing for increased flow rate yet a low-return pressure for positive seal. With installation possible in both horizontal and vertical orientations, the topentry design provides for simple in-line maintenance. VR Piston Check Valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

ASTM D1784 ASTM D2464 ASTM D2466 ASTM D2467 ASTM F1498

VALVE AVAILABILITY

Body Material	PVC
Size Range	1/2" through 4"
Pressure	232 psi (1/2" to 1"), 150 psi (1-1/4" to 2"), 90 psi (3" to 4")
Seals	EPDM, or FKM
End Connections	Socket (IPS), Threaded (FNPT), Flanged (ANSI 150)

ANSI B1.20.1 ANSI B16.5

Sample Specification

1.0 Check Valves - VR

1.1 Material

 The valve body, end connectors, and unions shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.

1.2 Seals

- · The o-ring seals and shutter shall be made of EPDM.
- or The o-ring seals and shutter shall be made of FKM.

2.0 Connections

2.1 Socket style

 The IPS socket PVC end connectors shall conform to the dimensional standards ASTM D2466 and ASTM D2467.

2.2 Threaded style

 The female NPT threaded PVC end connectors shall conform to the dimensional standards ASTM D2464, ASTM F1498, and ANSI B1.20.1.

2.3 Flanged style

 The ANSI 150 flanged PVC end connectors shall conform to the dimensional standard ANSI B16.5..

3.0 Design Features

- Valve sizes 1/2" through 2" shall have true union ends.
- Valve sizes 3" through 4" shall have either socket or threaded ends.
- · All valves shall be y-pattern globe style in design.
- All valves shall be gravity operated.
- The weight shall be totally encapsulated inside the piston.
- The valve shall function in both horizontal and vertical lines with no minimum column requirements.
- Servicing of the valves shall be possible without removal from the line.

3.1 Pressure Rating

- Valve sizes 1/2" through 1" shall be rated at 232 psi at 73°F.
- Flanged valve sizes 1/2" through 1" shall be rated at 150 psi at 73°F.
- Valve sizes 1-1/4" through 2" shall be rated at 150 psi at 73°F.
- Valve sizes 3" through 4" shall be rated at 90 psi at 73°F.

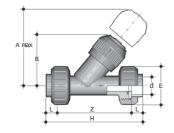
3.2 Markings

 All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.3 Color Coding

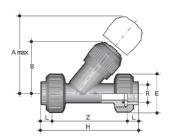
- All PVC valves shall be color-coded dark gray.
- 4.0 All valves shall be Xirtec® PVC by IPEX or approved equal.

Valve Selection

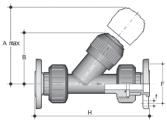

0:	D. J.	0	IPEX Part Number					ze (inches):		
Size (inches)	Body Material	O-ring Material	IPS Socket	FNPT Threaded	ANSI Flanged	Pressure Rating		1/2 3/4		1-1/2 2
1/2	PVC	EPDM	053	346	053879			1		3
1/ 2	PVC	FKM	053	3289	053885	232 psi		1-1/4		4
7//	DVC	EPDM	053	3347	053880	for S/T				
3/4	PVC	FKM	053	290	053886	- 150 psi	Se	Seals:		
1	DVC	EPDM	053	348	053881	for F		EPDM		
I	PVC	FKM	053	3291	053887			FKM		
1 1//	DVC	EPDM	053	3349	053882					
1-1/4	PVC	FKM	053	3292	053888		En	d Connectio	ns:	
1 1/0	DVC	EPDM	053	350	053883	150:		Socket (IP:	S)	
1-1/2	PVC	FKM	053	3293	053889	150 psi	☐ Threaded (FNPT) ☐ Flanged (ANSI 150		150 psi ☐ Threaded (F	⊺)
2	PVC	EPDM	053	3351	053884				ANSI 1	50
	PVC	FKM	053	3294	053890					
3	PVC	EPDM	053295	053352	053925	90 psi	IP	EX Part Num	ber:	
4	PVC	EPDM	053296	053353	053926	70 μοι				

Note: Sizes $3^{\prime\prime}$ and $4^{\prime\prime}$ are not true union style.

Dimensions

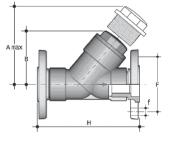

IPS Socket Connections - Dimension (inches)

Size	d	L	Z	Н	Е	В	A _{MAX}
1/2	0.84	0.63	4.06	5.31	2.17	2.83	4.92
3/4	1.05	0.75	4.72	6.22	2.60	3.31	5.71
1	1.32	0.87	5.20	6.93	2.95	3.74	6.50
1-1/4	1.66	1.02	6.10	8.15	3.43	4.37	7.48
1-1/2	1.90	1.22	7.13	9.57	3.94	4.72	8.27
2	2.38	1.50	8.72	11.73	4.72	5.47	9.45



Female NPT Threaded Connections – Dimension (inches)

Size	R	L	Z	Н	Е	В	A _{MAX}
1/2	1/2-NPT	0.59	4.45	5.63	2.17	2.83	4.92
3/4	3/4-NPT	0.64	5.02	6.30	2.60	3.31	5.71
1	1-NPT	0.75	5.70	7.20	2.95	3.74	6.50
1-1/4	1-1/4-NPT	0.84	6.74	8.43	3.43	4.37	7.48
1-1/2	1-1/2-NPT	0.84	7.57	9.25	3.94	4.72	8.27
2	2-NPT	1.01	9.20	11.22	4.72	5.47	9.45



Dimensions

A max		,
	d E	-
	Н	

ANSI 150 Flanged (Vanstone) Connections – Dimension (inches)

Size	# holes			Н	В	A _{MAX}
1/2	4	5/8	2-3/8	7.13	2.83	4.92
3/4	4	5/8	2-3/4	8.16	3.31	5.71
1	4	5/8	3-1/8	9.05	3.74	6.50
1-1/4	4	5/8	3-1/2	10.34	4.37	7.48
1-1/2	4	5/8	3-7/8	12.07	4.72	8.27
2	4	3/4	4-3/4	14.48	5.47	9.45

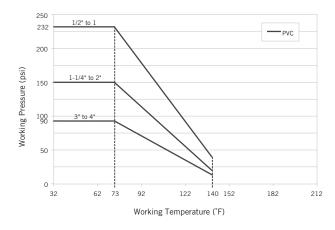
IPS Socket Connections - Dimension (inches)

Size	R	L	Z	Н	Е	В	AMAX
3	3.50	2.01	6.30	10.31	4.57	7.56	12.80
4	4.50	2.40	7.99	12.80	5.43	9.09	15.16

Female NPT Threaded Connections – Dimension (inches)

Size	R	L	Z	н	E	В	AMAX
3	3-NPT	1.31	7.69	10.31	4.57	7.56	12.80
4	4-NPT	1.55	9.70	12.80	5.43	9.09	15.16

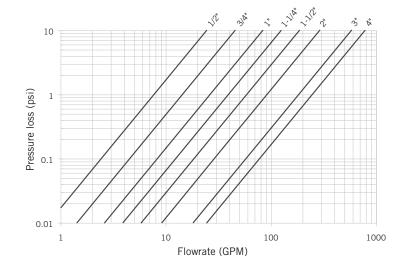
ANSI 150 Flanged (Vanstone) Connections – Dimension (inches)


Size	# holes			Н	В	AMAX
3	4	3/4	6	12.81	7.56	12.80
4	8	3/4	7-1/2	15.62	9.09	15.16

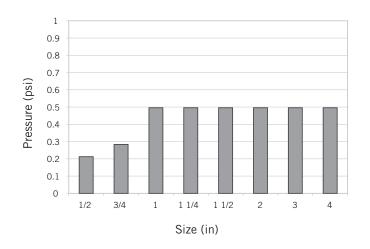
Weights

Approximate Weight (lbs)

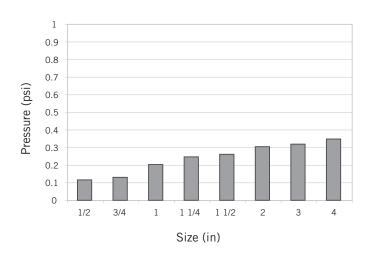
	, ipproximate 11 eight (i.e.s)							
Size	IPS Socket	FNPT Threaded	ANSI Flanged					
1/2	0.50	0.51	0.90					
3/4	0.86	0.86	1.44					
1	1.34	1.33	2.12					
1-1/4	2.03	2.05	3.04					
1-1/2	2.94	2.96	4.14					
2	5.10	5.18	6.98					
3	9.99	9.96	13.73					
4	15.81	15.36	21.80					


Pressure - Temperature Ratings

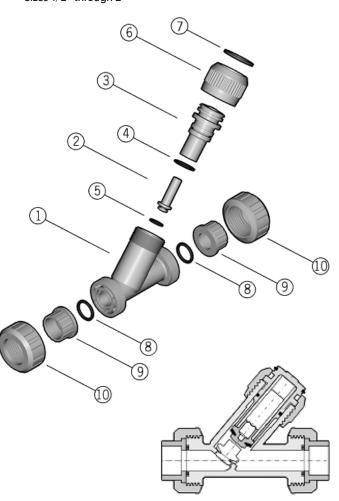
Flow Coefficients

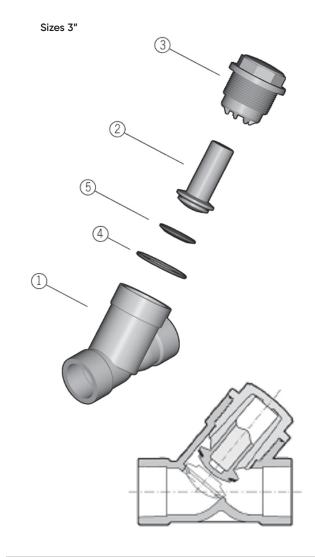

Size	C _v
1/2	7.70
3/4	14.4
1	26.3
1-1/4	39.2
1-1/2	58.5
2	91.0
3	182
4	245

Pressure Loss Chart

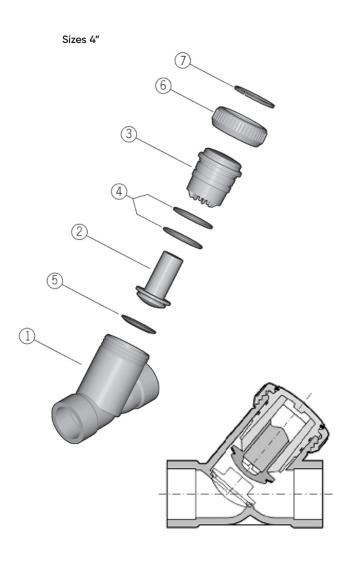

Minimum Back Pressure to Seal

Size (inches)	P (psi)
1/2	0.21
3/4	0.28
1	0.50
1-1/4	0.50
1-1/2	0.50
2	0.50
3	0.50
4	0.50


Minimum Pressure to Open


Size (inches)	P (psi)
1/2	0.12
3/4	0.13
1	0.20
1-1/4	0.25
1-1/2	0.26
2	0.30
3	0.32
4	0.35
1 1-1/4 1-1/2 2 3	0.20 0.25 0.26 0.30 0.32

Components


Sizes 1/2" through 2"

#	Component	Material	Qty
1	body	PVC	1
2	piston	PVC	1
3	bonnet	PVC	1
4	o-ring seal	EPDM or FKM	1
5	flat gasket	EPDM or FKM	1
6	lock nut	PVC	1
7	split ring	PVC	1
8	socket o-ring	EPDM or FKM	2
9	end connector	PVC	2
10	union nut	PVC	2

#	Component	Material	Qty
1	body	PVC	1
2	piston	PVC	1
3	bonnet	PVC	1
4	o-ring seal	EPDM or FKM	1
5	flat gasket	EPDM or FKM	1

#	Component	Material	Qty
1	body	PVC	1
2	piston	PVC	1
3	bonnet	PVC	1
4	o-ring seal	EPDM or FKM	2
5	flat gasket	EPDM or FKM	1
6	lock nut	PVC	1
7	split ring	PVC	1

Installation Procedures

True Union Style

- For socket and threaded style connections, remove the union nuts (part #10 on previous pages) and slide them onto the pipe. For flanged connections, remove the union nut / flange assemblies from the valve.
- Please refer to the appropriate connection style sub-section:
 - a. For socket style, solvent cement the end connectors (9) onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods - Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Be sure to allow sufficient cure time before continuing with the valve installation.
 - b. For threaded style, thread the end connectors (9) onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods – Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
 - c. For flanged style, join the union nut / flange assemblies to the pipe flanges. For correct joining procedure, please refer to the section entitled, "Joining Methods – Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
- Ensure that the valve is in the correct orientation. and that the socket o-rings (8) are properly fitted in their grooves. Carefully place the valve in the system between the two end connections.
- Tighten both union nuts and the lock nut (6). Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Over-tightening may damage the threads on the valve body and/or the nut, and may even cause the nut to crack.

Non True Union Style

- Please refer to the appropriate connection style sub-section:
 - a. For socket style, ensure that the valve is in the correct orientation then solvent cement the end connections of the valve body (1) to the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods - Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Be sure to allow sufficient cure time before continuing with the valve installation.
 - b. For threaded style, ensure that the valve is in the correct orientation then thread the pipe ends into the valve body (1). For correct joining procedure, please refer to the section entitled, "Joining Methods - Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
 - c. For flanged style, ensure that the valve is in the correct orientation then join to the pipe flanges. For correct joining procedure, please refer to the section entitled, "Joining Methods - Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
- Ensure that the bonnet (3, size 3") or lock nut (6, size 4") is sufficiently tightened. Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Over-tightening may damage the threads on the valve body and/or the nut, and may even cause the nut to crack.

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the system. Be sure to depressurize and drain the isolated branch and valve before continuing.
- 2. For true union style, loosen both union nuts (10) and drop the valve out of the line. If retaining the socket o-rings (8), take care that they are not lost when removing the valve from the line.
- 3. For sizes 1/2" through 2" and 4":
 - a. Loosen the lock nut (6) bonnet (3) assembly and remove from the valve body (1).
 - b. Remove the split ring (7) to separate the lock nut from the bonnet.
 - c. Remove the o-ring seal(s) (4) from the bonnet.
- 4. For size 3":
 - a. Loosen the bonnet (3) and remove from the valve body (1).
 - b. Remove the o-ring seal (4) from the groove on the valve body.
- 5. Remove the piston (2) from the valve body and then the flat gasket (5) from the piston.
- The valve components can now be checked for problems and/or replaced.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- 1. Properly fit the flat gasket (5) in the groove on the piston (2) then insert into the valve body (1).
- 2. For sizes 1/2" through 2" and 4":
 - a. Properly fit the o-ring seal(s) (4) onto the bonnet.
 - b. Place the lock nut (6) over the bonnet (3) then fit the split ring (7) in the groove to lock in position.
 - c. Insert the lock nut (6) bonnet (3) assembly into the valve body and tighten.
- 3. For size 3":
 - a. Properly fit the o-ring seal (4) in the groove on the valve body.
 - b. Tighten the bonnet (3) into the valve body.
- For true union style, ensure that the socket o-rings

 (8) are properly fitted in their grooves, place the end connectors into the union nuts (10), then tighten onto the valve body.

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

IPEX SC Swing Check Valves combine superior flow rate with maximum versatility. Stainless wetted parts and hardware, a top entry design, and integral flanged ends are just a few key features. With extremely low back pressure requirements, these valves are ideal for back-flow prevention in large diameter lines, both horizontal and vertical. SC Swing Check Valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

VALVE AVAILABILITY

Body Material	PVC
Size Range	3" - 8"
Pressure	100 psi (3") 70 psi (4" to 8")
Seals	EPDM, or Viton® (FKM)
End Connections	Flanged (ANSI 150)

Sample Specifications

1.0 Ball Valves - SC

1.1 Material

 The valve body, bonnet, swing arm, and disc shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.

1.2 Seals

- The o-ring seals and shutter shall be made of EPDM.
- The o-ring seals and shutter shall be made of FKM.

1.3 Bolts

 The bolts, nuts, and washers shall be made of 304 stainless steel.

2.0 Connections

2.1 Flanged style

 The ANSI 150 flanged PVC end connections shall conform to the dimensional standard ANSI B16.5.

3.0 Design Features

- All swing check valves shall be full flow.
- · All valves shall be gravity operated.
- The valve shall have a full face disc seal.
- The valve shall have a full open disc stop to prevent over-travel.
- The valve shall have no wetted metal parts.
- Service of the valve shall be possible without removal from the system line.
- All check valves may be installed in either horizontal or vertical orientations.

3.1 Pressure Rating

- Valve sizes 3" shall be rated at 100 psi at 73°F.
- Valve sizes 4" through 8" shall be rated at 70 psi at 73°F.

3.2 Markings

 All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.3 Color Coding

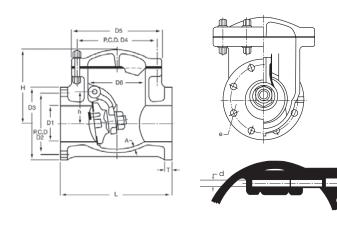
- All PVC valves shall be color-coded dark gray.
- **4.0** All valves shall be Xirtec® PVC by IPEX or approved equal.

Valve Selection

Size (inches)	Body Material	O-ring Material	IPEX Part Number Flanged	Pressure Rating @ 73°F
3	PVC	EPDM	052289	100
<u> </u>	PVC	Viton®	053875	100 psi
4	PVC	EPDM	052290	70 pgi
4	PVC	Viton®	053876	70 psi
6	DVC	EPDM	052291	70 mai
0	PVC	Viton®	053877	70 psi
8	e EPDM		052292	70 nai
0	PVC	Viton®	053878	70 psi

Size (inches):

□ 3 □ 6 □ 4 □ 8

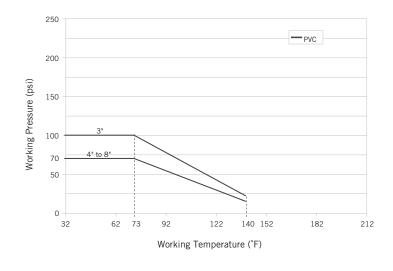

Seals:

☐ EPDM

☐ Viton® (FKM)

IPEX Part Number:

Dimensions and Weights


Dimension (inches)

Size	D1	D2	D3	D4	D5	D6	е	# holes
3	3.16	6.00	7.50	7.13	8.06	5.13	0.75	4
4	3.94	7.50	9.00	9.25	10.44	6.69	0.75	8
6	5.53	9.50	11.00	13.00	14.56	9.84	0.88	8
8	7.88	11.75	13.50	15.31	16.71	11.81	0.88	8

Dimension (inches)

Size	L	Т	Α	h	Н	d	W (lbs)
3	10.25	0.79	0.34	2.75	6.72	0.47	8.25
4	11.82	0.90	0.41	3.53	8.38	0.63	19.40
6	15.75	1.20	0.63	5.31	10.56	0.78	28.66
8	16.69	1.22	0.72	6.69	12.06	0.78	46.30

Pressure - Temperature Ratings

Minimum Back Pressure to Seal

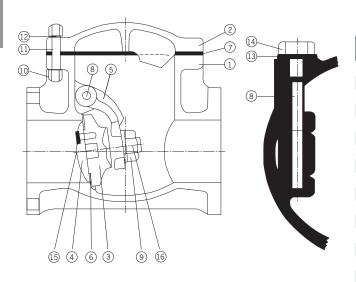
Size	PSI
3	8.5
4	9.7
5	9.7
6	11.9
8	11.9

Flow Coefficients

The flow coefficient (C_V) represents the flow rate in gallons per minute (GPM) at 68°F for which there is a 1 psi pressure drop across the valve in the fully open position. These values are determined from an industry standard testing procedure which uses water as the flowing media (specific gravity of 1.0). To determine specific flow rate and pressure loss scenarios, one can use the following formula:

Size	C _v
3	300
4	480
6	1100
8	1900

f	= \$\sigma	vl	/_	2	2
J	– 3 g	^	\sqrt{C}	V	


Where.

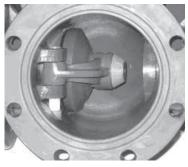
- f is the pressure drop (friction loss) in psi,
- is the specific gravity of the fluid,
- is the flow rate in GPM,
- is the flow coefficient.

Pressure Loss Chart

Components

#	Component	Material	Qty
1	body	PVC	1
2	bonnet	PVC	1
3	disc	PVC	1
4	gasket holder	PVC	1
5	swing arm	PVC	1
6	disc gasket	EPDM or Viton®	1
7	bonnet gasket	EPDM or Viton®	1
8	shaft	PVC	1
9	disc holder	PVC	1
10	bolts	SUS 304	6 (3"), 8 (4" to 8")
11	nuts	SUS 304	6 (3"), 8 (4" to 8")
12	washers	SUS 304	6 (3"), 8 (4" to 8")
13	o-ring	EPDM or Viton®	1
14	shaft holder	PVC	1
15	set bolts	PVC	3 (3"), 4 (5" to 6"), 8 (8")
16	set pin	PVC	1

Installation Procedures


- Ensure that the valve is in the correct orientation then carefully place the valve in the system between the two pipe flanges.
- Join each end of the valve to the pipe flanges. For correct joining procedure, please refer to the section entitled, "Joining Methods – Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the system. Be sure to depressurize and drain the isolated branch and valve before continuing.
- Loosen end of the valve from the pipe flanges.
 Please refer to the section entitled, "Joining Methods
 – Flanging" in the IPEX Industrial Technical Manual
 Series, "Volume I: Vinyl Process Piping Systems" for a
 recommended bolt tightening pattern diagram. Follow
 the same pattern when disassembling the flanged
 joints.
- 3. Carefully remove the valve from the line.
- 4. Loosen and remove the nuts (10), bolts (11), and washers (12) then remove the bonnet (2) and gasket (7) from the top of the valve body (1).
- 5. Loosen the shaft holder (14) and remove the o-ring (13).
- 6. Remove the shaft (8) then take the swing arm (5) assembly out of the valve.
- To disassemble the swing arm, loosen the set bolt(s)
 (15) then remove the gasket holder (4) and disc gasket
 (6) from the disc (3).
- The valve components can now be checked for problems and/or replaced.

Note: The disc and disc holder (9) are permanently fixed to the swing arm by the set pin (16) and cannot be disassembled.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- Assemble the swing arm (5) components by placing the disc gasket (6) and gasket holder (4) on the disc (3) then tightening the set bolt(s) (15).
- 2. Place the swing arm assembly into the valve body (1) then insert the shaft (8) through the mounting holes.
- 3. Fit the o-ring (13) on the shaft holder (14) then sufficiently tighten into the valve body.
- 4. Taking care to line up all the holes, place the gasket (7) and bonnet (2) onto the valve body.
- Insert and tighten all nuts (10), bolts (11), and washers (12) according to a proper flange bolt tightening pattern.

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

VA SERIES AIR RELEASE VALVES

IPEX VA Air Release Valves are of a unique design, controlled by media and not pressure. Intended for use with tanks, slurries, and start-ups amongst other things, these 232 psi pressure rated valves will economically and efficiently eliminate air or gas pockets. This no-spill valve also relieves potentially dangerous vacuums that may build up in the piping system. VA Air Release Valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

VALVE AVAILABILITY

Body Material	PVC
Size Range	3/4", 1-1/4", 2"
Pressure	232 psi
Seals	EPDM or FKM
End Connections	Bottom – Threaded (FNPT) Top – Socket (IPS), Threaded (FNPT)

VA SERIES AIR RELEASE VALVES

Sample Specification

1.0 Air Release Valves - VA

1.1 Material

The valve body, piston, end connectors, and union shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.

1.2 Seals

- The o-ring seals shall be made of EPDM.
- The o-ring seals shall be made of FKM.

2.0 Connections

2.1 Threaded style

The female NPT threaded PVC end connectors shall conform to the dimensional standards ASTM D2464, ASTM F1498, and ANSI B1.20.1.

3.0 Design Features

- The valve shall be of single union design.
- The valve sealing mechanism shall be a hollow piston.
- Opening and closing of the valve shall not be affected by pressure.
- The valve shall close when liquid is in contact with the piston.
- The valve shall open when air or gas is in contact with the piston.
- The valve shall also function as a vacuum breaker.
- The valve body and union nut shall have deep square style threads for increased strength.

Valve Selection

Valve Size (inches)	Body Material	O-ring Material	IPEX Part Number FNPT Threaded	Pressure Rating @ 73°F
3/4	EPD PVC		053559	
3/4	PVC	FKM	153845*	
1-1/4	PVC	EPDM	053560	272 pgi
1-1/4	PVC	FKM	153846*	232 psi
2	PVC	EPDM	053561	-
2		FKM	153847*	

^{*} Part numbers are for FKM o-ring sets only. The EPDM version must be ordered to obtain the valve.

3.1 Pressure Rating

All valves shall be rated at 232 psi at 73°F.

3.2 Markings

All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.3 Color Coding

- All PVC valves shall be color-coded dark gray.
- 4.0 All valves shall be Xirtec® PVC by IPEX or approved equal.

Size (inches):

□ 3/4 □ 1-1/4

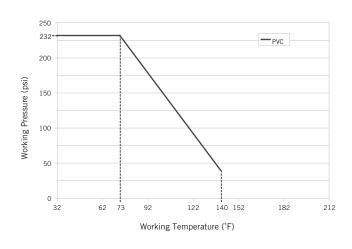
Seals:

 \square 2

☐ FPDM ☐ FKM

IPEX Part Number:

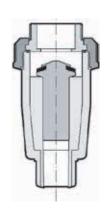
VA SERIES AIR RELEASE VALVES

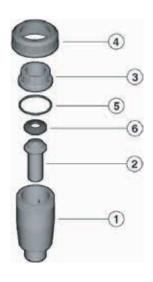

Dimensions and Weights

Dimension (inches)

Size	R	Е	L	Z	Н	W (lbs)
3/4	3/4 NPT	2.60	0.64	4.58	5.87	0.45
1-1/4	1-1/4 NPT	3.43	0.84	6.19	7.87	1.05
2	2 NPT	4.72	1.01	7.74	9.76	2.49

Pressure - Temperature Ratings


Air Flow Chart

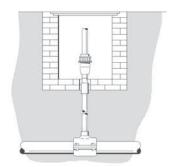

Maximum Air Flow / Air Velocity Relationship

Size	20 p	osig	40	osig	60 p	osig	80 k	osig	100	psig	120	osig
(inches)	F	V	F	V	F	V	F	V	F	V	F	V
3/4	19	39	36	47	54	52	72	54	91	57	110	58
1-1/4	67	54	127	65	188	70	250	74	313	76	376	78
2	177	69	331	82	491	89	652	93	814	96	980	99

F = Air Flow (scfm), V = Air Velocity (ft/s)

Components

#	Component	Material	Qty
1	body	PVC	1
2	piston	PVC	1
3	end connector	PVC	1
4	union nut	PVC	1
5	body o-ring	EPDM or FKM	1
6	piston o-ring	EPDM or FKM	1


VA SERIES AIR RELEASE VALVES

Installation Procedures

- Remove the union nut (part #4 on previous page) and slide it onto the outlet stack pipe. The valve must always be installed in a vertical orientation with the union nut joint at the top.
- Please refer to the appropriate connection style sub-section:
 - a. For socket style, solvent cement the end connector (3) onto the outlet stack pipe end. For correct joining procedure, please refer to the section entitled, "Joining Methods – Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Be sure to allow sufficient cure time before continuing with the valve installation.
 - b. For threaded style, thread the end connector (3) onto the outlet stack pipe end. For correct joining procedure, please refer to the section entitled, "Joining Methods - Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
- Remove the piston (2) then thread the valve body (1) onto the inlet pipe and sufficiently tighten with a wrench.
- Ensure that the piston o-ring (6) is properly fitted in its groove, then replace the piston inside the valve body.
- Ensure that the body o-ring (5) is properly fitted in its groove, then install the outlet stack pipe and tighten the union nut. Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Over-tightening may damage the threads on the valve body and/or the union nut, and may even cause the union nut to crack.

Note: When used for corrosive chemical applications, a minimum 18 inch outlet stack must be installed.

VA SERIES AIR RELEASE VALVES

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the system. Be sure to depressurize and drain the isolated branch and valve before continuing.
- 2. Loosen the union nut (4) and remove the outlet stack pipe. If retaining the body o-ring (5), take care that it is not lost when removing the valve from the line.
- 3. Remove the piston (2) from the valve body (1).
- 4. Loosen and remove the valve body from the inlet pipe.
- 5. Remove the piston o-ring (6) from the piston.
- The valve components can now be checked for problems and/or replaced.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- 1. Properly fit the piston o-ring (6) in the groove on the piston (2).
- 2. Insert the piston into the valve body (1).
- 3. Properly fit the body o-ring (5) in the groove on the valve body.
- 4. Position the end connector (3) on the valve body.
- 5. Position the union nut (4) on the valve body and tighten.

Dimensions and Weights

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series,

"Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

NOTES

SECTION SIX: SPECIALTY VALVES

RV SERIES SEDIMENT STRAINERS

IPEX RV Sediment Strainers protect critical pipeline components by removing solids and suspended impurities. Clear PVC construction allows for inspection of the screen while in service, whereas the bottom-entry design permits maintenance on the valve while in-line. This Y-pattern strainer is also available in Xirtec® CPVC. RV RV Sediment Strainers are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

VALVE AVAILABILITY

Body Material	PVC, CPVC
Size Range	1/2" – 4"
Pressure	232 psi (1/2" to 1"), 150 psi (1-1/4" to 2"), 60 psi (3" to 4")
Seals	EPDM or FKM
End Connections	Socket (IPS), Threaded (FNPT), Flanged (ANSI 150)

ASTM D1784 ASTM F441 ASTM D2464 ASTM D2466 ASTM D2467 ASTM F437 ASTM F439 ASTM F1498

ANSI B1.20.1 ANSI B16.5

Sample Specification

1.0 Sediment Strainers - RV

1.1 Material

- The valve body, end connectors, and unions shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.
- or The valve body, end connectors, and unions shall be made of Corzan® CPVC compound which shall meet or exceed the requirements of 23447 according to ASTM D1784.

1.2 Seals

- The o-ring seals shall be made of EPDM.
- The o-ring seals shall be made of FKM.

1.3 Mesh Screen

- The mesh screen shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.
- or The mesh screen shall be made of stabilized PP homopolymer compound, also containing a RAL 7032 pigment, which shall meet or exceed the requirements of Type I Polypropylene according to ASTM D4101-86.
- or The mesh screen shall be made of corrosion resistand 304 stainless steel.

2.0 Connections

2.1 Socket style

- The IPS socket PVC end connectors shall conform to the dimensional standards ASTM D2466 and ASTM D2467.
- or The IPS socket CPVC end connectors shall conform to the dimensional standard ASTM F439.

2.2 Threaded style

- The female NPT threaded PVC end connectors shall conform to the dimensional standards ASTM D2464, ASTM F1498, and ANSI B1.20.1
- The female NPT threaded CPVC end connectors shall conform to the dimensional standards ASTM F437, ASTM F1498, and ANSI B1.20.1.

2.3 Flanged style

- The ANSI 150 flanged PVC end connectors shall conform to the dimensional standard ANSI B16.5.
- or The ANSI 150 flanged CPVC end connectors shall conform to the dimensional standard ANSI B16.5

3.0 Design Features

- Strainers shall be Y-pattern in style.
- Sizes 1/2" through 2" shall have true union ends.
- Sizes 3" and 4" shall have solid threaded or socket ends.
- It shall be possible to service the valve without removing it from the line.
- PVC strainers shall have a transparent body for evaluation of filter screen condition.
- The filter screens shall be available in ASTM 18, 20, 30, 35, 40, 45 and 70 mesh sizes.

3.1 Pressure Rating

- PVC valve sizes 1/2" through 1" shall be rated at 232 psi at 73°F.
- CPVC valve sizes 1/2" through 2" shall be rated at 232 psi at 73°F.
- PVC valve sizes 1-1/4" through 2" shall be rated at 150 psi at 73°F
- PVC valve sizes 3" through 4" shall be rated at 60 psi at 73°F.
- All sizes of flanged valves shall be rated at no greater than 150 psi at 73°F.

3.2 Markings

All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

3.3 Color Coding

- All PVC valves shall have transparent bodies with end connections color-coded dark gray.
- or All CPVC valves shall be color-coded light gray.
- 4.0 All valves shall be Xirtec® PVC or Xirtec® CPVC by IPEX or approved equal.

Valve Selection

Size (inches)	Body Material	O-ring Material	IPEX Part Numb IPS FNPT Socket Threaded	per ANSI Flanged	Pressure Rating	Body Material:
		EPDM	053261	053935		□ PVC □ CPVC
* 1/2	PVC	FKM	053233	053941		
	CPVC	FKM	053334	n/a		Size (inches):
	DVC	EPDM	053262	053936		□ 1/2 □ 1-1/2
* 3/4	PVC	FKM	053234	053942	232 psi	□ 3/4 □ 2 □ 1 □ 3
	CPVC	FKM	053335	n/a		□ 1-1/4 □ 4
	PVC	EPDM	053263	053937		
1	PVC	FKM	053235	053943		
	CPVC	FKM	053336	n/a		Seals:
	DVC	EPDM	053264	053938	EPDM 150 psi	
1-1/4	PVC	FKM	053236	053944	150 þsi	☐ FKM
	CPVC	FKM	053337	n/a	232 psi	
DVO	PVC	EPDM	053265	053939	1EO poi	Ford Commontinuo
1-1/2	PVC	FKM	053237	053945	150 psi	End Connections:
	CPVC	FKM	053338	n/a	232 psi	☐ Socket (IPS)☐ Threaded (FNPT)
	PVC	EPDM	053266	053940	☐ Flanaed (ANSI 150)	
2	PVC	FKM	053238	053946	150 psi	
	CPVC	FKM	053339	n/a	232 psi	
3	PVC	EPDM	053211 053267	n/a		
ა 	PVC	FKM	054012 053239	n/a	40 pgi	IPEX Part Number:
	D)/C	EPDM	053212 053268	n/a	60 psi	
4	PVC	FKM	054013 053240	n/a		

Note: Standard screens are 40 mesh PVC for PVC strainers and 20 mesh PP for CPVC strainers

^{* 18} mesh PP

Mesh Availability

ASTM	Hole Pitch		Material	
Mesh Size	(in)	PVC	PP	304 SS
18	0.059	-	✓	-
20	0.059	-	✓	-
30	0.098	✓	-	-
35	0.079	✓	-	-
40	0.059	✓	-	-
45	0.028	-	-	✓
70	0.039	1	_	_

PVC 30 Mesh PVC 70 Mesh

Strainer Size	Part Number
1/2	053947
3/4	053948
1	053949
1-1/4	053950
1-1/2	053951
2	053952
3	053953
4	053954

Strainer Size	Part Number
1/2	053971
3/4	053972
1	053973
1-1/4	053974
1-1/2	053975
2	053976
3	053977
4	053978

PVC 35 Mesh

Strainer Size	Part Number
1/2	053955
3/4	053956
1	053957
1-1/4	053958
1-1/2	053959
2	053960
3	053961
4	053962

PP 20 Mesh

Strainer Size	Part Number
* 1/2	053332
* 3/4	053340
1	053341
1-1/4	053342
1-1/2	053343
2	053344

^{*} PP 18 Mesh

Strainer Size (inches):

1/2	1-1/2
3/4	2
1	3
1-1/4	4

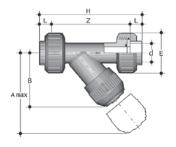
Screen Material:

PVC
304 SS
PP

Mesh Size:

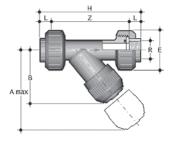
	ASTM 18 ASTM 20 ASTM 30 ASTM 35 ASTM 40
_	,
	,
	ASTM 70

IPEX Part Number:

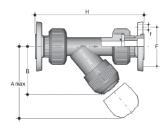

PVC 40 Mesh

Strainer Size	Part Number	
1/2	053963	
3/4	053964	
1	053965	
1-1/4	053966	
1-1/2	053967	
2	053968	
3	053969	
4	053970	

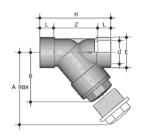
304 SS 45 Mesh


Strainer Size	Part Number
1/2	053979
3/4	053980
1	053981
1-1/4	053982
1-1/2	053983
2	053984
3	053985
4	053986

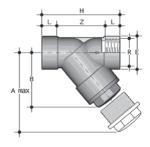
Dimensions


IPS Socket Connections - Dimension (inches)

Size	d	L	Z	Н	Е	В	AMAX
1/2	0.84	0.63	4.06	5.31	2.17	2.83	4.92
3/4	1.05	0.75	4.72	6.22	2.60	3.31	5.71
1	1.32	0.87	5.20	6.93	2.95	3.74	6.50
1-1/4	1.66	1.02	6.10	8.15	3.43	4.37	7.48
1-1/2	1.90	1.22	7.13	9.57	3.94	4.72	8.27
2	2.38	1.50	8.72	11.73	4.72	5.47	9.45


Female NPT Threaded Connections - Dimension (inches)

Size	R	L	Z	Н	E	В	AMAX
1/2	1/2-NPT	0.59	4.45	5.63	2.17	2.83	4.92
3/4	3/4-NPT	0.64	5.02	6.30	2.60	3.31	5.71
1	1-NPT	0.75	5.70	7.20	2.95	3.74	6.50
1-1/4	1-1/4-NPT	0.84	6.74	8.43	3.43	4.37	7.48
1-1/2	1-1/2-NPT	0.84	7.57	9.25	3.94	4.72	8.27
2	2-NPT	1.01	9.20	11.22	4.72	5.47	9.45


ANSI 150 Flanged (Vanstone) Connections – Dimension (inches)

Size	# holes	f	F	Н	В	AMAX
1/2	4	5/8	2-3/8	7.13	2.83	4.92
3/4	4	5/8	2-3/4	8.16	3.31	5.71
1	4	5/8	3-1/8	9.05	3.74	6.50
1-1/4	4	5/8	3-1/2	10.34	4.37	7.48
1-1/2	4	5/8	3-7/8	12.07	4.72	8.27
2	4	3/4	4-3/4	14.48	5.47	9.45

IPS Socket Connections - Dimension (inches)

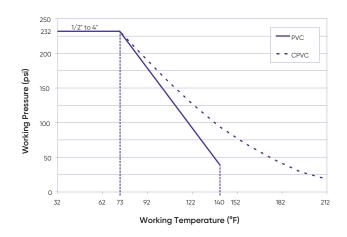
Size	R	L	Z	Н	Е	В	AMAX
3	3.50	2.01	6.30	10.31	4.57	7.56	12.80
4	4.50	2.40	7.99	12.80	5.43	9.09	15.16

Female NPT Threaded Connections – Dimension (inches)

Size	R	L	Z	Н	Е	В	AMAX
3	3-NPT	1.31	7.69	10.31	4.57	7.56	12.80
4	4-NPT	1.55	970	12.80	5.43	909	15 16

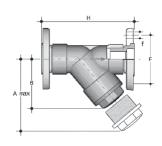
Screen Data

Valve Size	Total Strainer Area (in²)
1/2	2.48
3/4	3.64
1	5.58
1-1/4	8.22
1-1/2	10.70
2	15.66
3	38.29
4	61.38

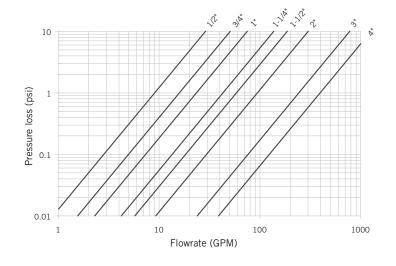

ASTM Mesh Size	Hole Pitch (in)	Hole Diameter Microns (μm)	Screen Material
18	0.059	1,016	PP
20	0.059	889	PP
30	0.098	580	PVC
35	0.079	550	PVC
40	0.059	420	PVC
45	0.028	370	304 SS
70	0.039	200	PVC

Weights

Approximate Weight (lbs)


	PVC			CF	PVC
Size (in)	IPS Socket	FNPT Threaded	ANSI Flanged	IPS Socket	FNPT Threaded
1/2	0.47	0.46	0.87	0.51	0.51
3/4	0.79	0.78	1.37	0.86	0.86
1	1.16	1.15	1.94	1.27	1.27
1-1/4	1.62	1.64	2.62	1.77	1.79
1-1/2	2.41	2.44	3.61	2.64	2.67
2	4.06	4.13	5.94	4.45	4.52
3	6.56	6.54	n/a	n/a	n/a
4	10.16	9.71	n/a	n/a	n/a

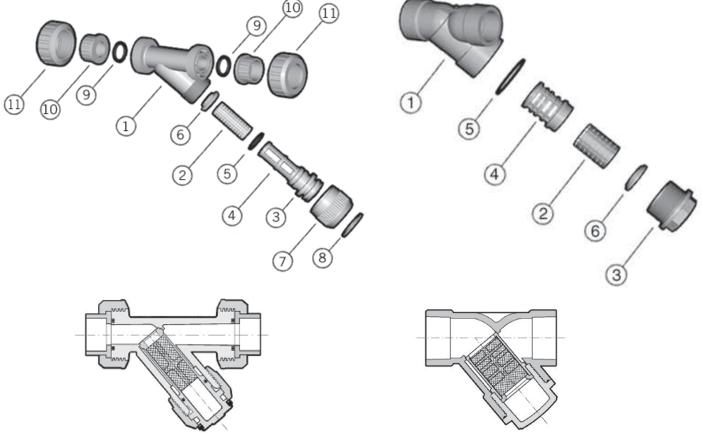
Pressure – Temperature Ratings



Flow Coefficients

Size	C _V
1/2	2.80
3/4	4.90
1	7.21
1-1/4	13.2
1-1/2	17.9
2	28.7
3	73.5
4	119

Pressure Loss Chart



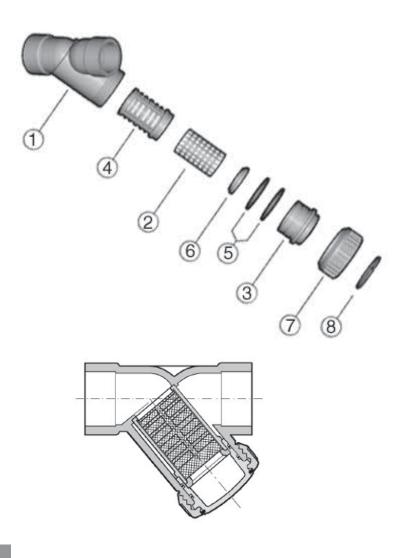
254 IPEX Thermoplastic Valves

Sizes 3"

Components

Sizes 1/2" - 2"

#	Component	Material	Qty
1	body	PVC / CPVC	1
* 2	screen mesh	PVC / PP / 304 SS	1
* 3	bonnet	PVC / CPVC	1
* 4	screen support	PVC / CPVC	1
* 5	o-ring seal	EPDM or FKM	1
* 6	retaining ring	PVC / CPVC	1
* 7	lock nut	PVC / CPVC	1
* 8	split ring	PVC / CPVC	1
* 9	socket o-ring	EPDM or FKM	2
* 10	end connector	PVC / CPVC	2
* 11	union nut	PVC / CPVC	2


* Spare	parts	avai	lab	le.
---------	-------	------	-----	-----

#	Component	Material	Qty
1	body	PVC / CPVC	1
* 2	screen mesh	PVC / 304 SS	1
* 3	bonnet	PVC	1
* 4	screen support	PVC	1
* 5	o-ring seal	EPDM or FKM	1
* 6	retaining ring	PVC	1

^{*} Spare parts available.

Components

Size 4"

	Component	Material	Qty
1	body	PVC / CPVC	1
* 2	screen mesh	PVC / 304 SS	1
* 3	bonnet	PVC	1
* 4	screen support	PVC	1
* 5	o-ring seal	EPDM or FKM	1
* 6	retaining ring	PVC	1
* 7	lock nut	PVC	1
* 8	split ring	PVC	1

^{*} Spare parts available.

Installation Procedures

True Union Style

- For socket and threaded style connections, remove the union nuts (part #11 on previous pages) and slide them onto the pipe. For flanged connections, remove the union nut / flange assemblies from the valve.
- Please refer to the appropriate connection style sub-section:
 - a. For socket style, solvent cement the end connectors (10) onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Be sure to allow sufficient cure time before continuing with the valve installation.
 - For threaded style, thread the end connectors (10) onto the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
 - c. For flanged style, join the union nut / flange assemblies to the pipe flanges. For correct joining procedure, please refer to the section entitled, "Joining Methods Flanging" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
- 3. Ensure that the valve is in the correct orientation (the bonnet should be suspended in a downward direction), and that the socket o-rings (9) are properly fitted in their grooves. Carefully place the valve in the system between the two end connections.
- 4. Tighten both union nuts and the lock nut (7). Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Over-tightening may damage the threads on the valve body and/or the nut, and may even cause the nut to crack.

Non True Union Style

- Please refer to the appropriate connection style sub-section:
 - a. For socket style, ensure that the valve is in the correct orientation (the bonnet should be suspended in a downward direction) then solvent cement the end connections of the valve body (1) to the pipe ends. For correct joining procedure, please refer to the section entitled, "Joining Methods – Solvent Cementing" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems". Ensure that no excess solvent runs into the body as this would cause severe damage to internal components and render the strainer inoperative. Be sure to allow sufficient cure time before continuing with the valve installation.
 - b. For threaded style, ensure that the valve is in the correct orientation (the bonnet should be suspended in a downward direction) then thread the pipe ends into the valve body (1). For correct joining procedure, please refer to the section entitled, "Joining Methods – Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems".
 - c. For flanged style, ensure that the valve is in the correct orientation (the bonnet should be suspended in a downward direction) then join to the pipe flanges. For correct joining procedure, please refer to the section entitled,

Ensure that the bonnet (3, size 3") or lock nut (7, size 4") is sufficiently tightened. Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Over-tightening may damage the threads on the valve body and/or the nut, and may even cause the nut to crack.

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the system. Be sure to depressurize and drain the isolated branch and valve before continuing.
- 2. For true union style, loosen both union nuts (11) and drop the valve out of the line. If retaining the socket o-rings (9), take care that they are not lost when removing the valve from the line.
- For sizes 1/2" through 2" and 4":
 - a. Loosen the lock nut (7) bonnet (3) assembly and remove from the valve body (1).
 - b. Remove the split ring (8) to separate the lock nut from the bonnet.
 - c. Remove the retaining ring (6) and slide the screen mesh (2) out of the screen support (4).
 - d. Remove the o-ring seal(s) (5) from the bonnet.
- For size 3":
 - a. Loosen the bonnet (3) and remove from the valve body (1).
 - b. Remove the retaining ring (6) and slide the screen mesh (2) out of the screen support (4).
 - c. Remove the o-ring seal(s) (5) from the groove on the valve body.
- The valve components can now be checked for problems and/or replaced.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- For sizes 1/2" through 2" and 4":
 - a. Properly fit the o-ring seal(s) (5) onto the bonnet (3).
 - b. Insert the screen mesh (2) into the screen support (4) and fasten with the retaining ring (6).
 - c. Place the lock nut (7) over the bonnet then fit the split ring (8) in the groove to lock in position.
 - d. Insert the screen and lock nut bonnet assembly into the valve body (1) and tighten.
- 2. For size 3":
 - a. Properly fit the o-ring seal (5) onto the bonnet (1).
 - b. Insert the screen mesh (2) into the screen support (4) and fasten with the retaining ring (6).
 - c. Insert the screen assembly into the valve body.
 - d. Tighten the bonnet (3) into the valve body.
- For true union style, ensure that the socket o-rings (9) are properly fitted in their grooves, place the end connectors (10) into the union nuts (11), then tighten onto the valve body.

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.
- To eliminate any possible damage to the filter screen, the design of the system should ensure that reverse flow conditions cannot occur.
- Transparent PVC strainers:
 - Allow light into the process flow facilitating the growth of micro-organisms.
 - Are not protected against UV radiation, reducing its lifetime in open air use.
 - Must be protected against vibrating stresses in proximity to pumping stations.
- Always check the cleanliness of the filtering screen.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

IPEX LV Lab Valves are an ingenious PVC quarter turn product ideal for many simple plumbing applications. These compact, economical valves are supplied with an assortment of connections that match up with any kind of existing pipe or hose. LV Lab Valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

VALVE AVAILABILITY

Body Material	PVC, CPVC
Size Range	1/4"
Pressure	150 psi
Seals	Teflon® (PTFE)
End Connections	Threaded (MNPT) Hose Adaptor

Sample Specification

1.0 Lab Valves - LV

1.1 Material

 The valve body and ball shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.

1.2 Seats

• The ball seats shall be made of Teflon® (PTFE).

1.3 Seals

· The o-ring seals shall be made of EPDM.

2.0 Connections

2.1 Threaded style

 The male NPT threaded PVC end connections shall conform to the dimensional standards ASTM D2464, ASTM F1498, and ANSI B1.20.1.

2.2 Hose adaptor style

 Hose adaptors may be substituted for the male NPT threaded PVC end connections.

3.0 Design Features

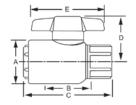
- The valve shall have a double stop polypropylene handle.
- · The valve shall allow for bi-directional flow.

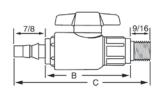
3.1 Pressure Rating

• All valves shall be rated at 150 psi at 73°F.

3.2 Markings

 All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

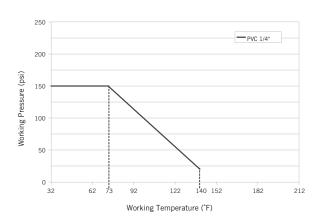

3.3 Color Coding


- All PVC valves shall be color-coded dark gray.
- 4.0 All valves shall be Xirtec® PVC by IPEX or approved equal.

Valve Selection

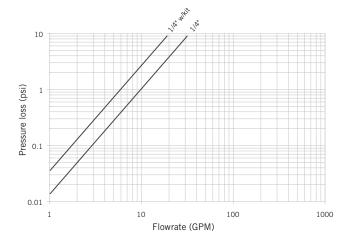
Size (inches)	Body Material	O-ring Material	IPEX Part Number IPS Socket	Pressure Rating at 73°F
1/4	PVC	EPDM	052308	150 psi
1/4 w/kit	PVC	EPDM	052308	150 psi

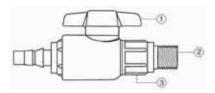
Dimensions and Weights



Dimension (inches)

Size	Α	В	С	D	Е	W (lbs)
1/4	1.06	0.938	2.13	1.06	1.75	0.10
1/4 w/kit	1.06	2.44	3.88	1.06	1.75	0.14


Pressure - Temperature Ratings


Flow Coefficients

Size	C _v
1/4	10.0
1/4 w/kit	6.00

Pressure Loss Chart


Components

#	Component	Material	Qty
1	handle	PP	1
2	end connector	PVC	1
3	body	PVC	2

Installation Procedures

- 1. Install the o-ring in the groove at the base of the threads on the desired end connector (part #2 on previous page).
- 2. Hand-tighten each end connector into the valve body (3). **Do not use Teflon® tape or thread sealant**.
- Tighten down the end connectors using the supplied plastic wrench.
 Caution: Over-tightening may cause damage to the valve body and/or end connectors.
- 4. Use the appropriate fittings or tube and ring clamps to connect the valve to the system.

- If removing the valve from an operating system, isolate the valve from the rest of the system. Be sure to depressurize and drain the isolated branch and valve before continuing.
- 2. Depending on the connection type, either loosen the fittings or ring clamps to remove the valve.
- 3. The valve can now be reused and/or replaced.

Note: The LV Lab Valve has a one piece valve body. It cannot be disassembled.

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation. In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

The IPEX S12/22 Series True Union Solenoid Valves represent the latest innovation in valve manufacturing technology. The S12/22 Series replaces the well-received SF Series with a number of new features and is designed for industrial, OEM and water service applications. The S12/22 is direct acting, 2 way-2 position flow control valve, ideal for precise control and high-cycle service. The new high-performance electric solenoid actuator has been redesigned to exceed 5 million cycles without having to perform maintenance and a 100% duty cycle means no issues with overheating or "burnout". With their lever type shutter design, standard manual override, and LED position indicator, these valves will outlast and outperform more conventional diaphragm-style solenoid valves.

S12/22 Solenoid Valves are part of our complete system of IPEX pipe, valves and fittings, engineered and manufactured to our strict quality, performance and dimensional standards.

VALVE AVAILABILITY

Body Material	PVC
Size Range	1/4" through 1/2"
Pressure	up to 90 psi
Seals	EPDM or FKM
End Connections	Socket (IPS),Threaded (FNPT)

ASTM D1784 ASTM D2464 ASTM D2466 ASTM D2467 ASTM F1498

Sample Specification

1.0 Solenoid Valves - S12/22

1.1 Material

The valve body, end connectors, and unions shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.

1.2 Seals

- The o-ring seals and shutter shall be made of EPDM.
- or The o-ring seals and shutter shall be made of FKM.

2.0 Connections

2.1 Socket style

The IPS socket PVC end connectors shall conform to the dimensional standards ASTM D2466 and ASTM D2467.

2.2 Threaded style

The female NPT threaded PVC end connectors shall conform to the dimensional standards ASTM D2464, ASTM F1498, and ANSI B1.20.1.

3.0 Design Features

- The valve shall have true union ends.
- The valve opening and closing mechanism shall be a lever type shutter.
- The valve shall have a standard LED indicator.
- The valve shall have an integrated manual override in the event of a loss of power to the valve.
- The electric solenoid actuator shall be designed to exceed 5 million cycles without having to perform maintenance.
- All metallic valve parts shall be isolated from fluids and the external environment.
- All screws shall be protected by polyethylene caps.

3.1 Pressure Rating

- Valve sizes ND 0.16" (1/4) and ND 0.31" (1/2) shall be rated at 90 psi at 73°F.
- Valve sizes ND 0.24" (1/4) and ND 0.39" (1/2) shall be rated at 60 psi at 73°F.
- Valve sizes ND 0.31" (1/4) and ND 0.59" (1/2) shall be rated at 30 psi at 73°F.

3.2 Markings

All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

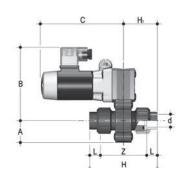
3.3 Color Coding

- All PVC valves shall be color-coded dark gray.
- 4.0 All valves shall be Xirtec® PVC PVC by IPEX or approved equal.

Valve Selection

S	ize	Body	O-ring	t Number	Pressure	
	:hes)	Material	Material	IPS Socket	FNPT Threaded	Rating
1/4	0.16	PVC	EPDM	353687	353723	90 psi
1/4	0.10	PVC	FKM	353711	353699	90 psi
1/4	0.24	PVC	EPDM	353688	353724	40 mai
1/4	0.24	PVC	FKM	353712	353698	60 psi
1//	0.71	PVC	EPDM	353689	353725	70:
1/4	0.31	PVC	FKM	353713	353697	30 psi
1/2	0.31	PVC	EPDM	353696	353734	00
1/2	0.31	PVC	FKM	353722	353708	90 psi
1/2	(2 0.70	DVC	EPDM	353709	353733	(0:
1/2	0.39	PVC	FKM	353721	353707	60 psi
1/2	/2 0.59	DVC	EPDM	353710	353732	70:
1/2		PVC	FKM	353720	353706	30 psi

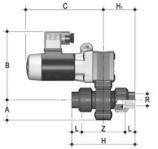
Size (inches):


- □ 1/4" ND 0.16"
- □ 1/4" ND 0.24"
- \Box 1/4" ND 0.31"
- \Box 1/2" ND 0.31"
- □ 1/2" ND 0.39"
- □ 1/2" ND 0.59"

Seals:

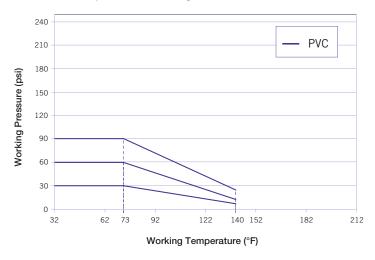
- ☐ EPDM
- ☐ FKM

IPEX Part Number:


Dimension and Weights

IPS socket connections - Dimension (inches)

Туре	Size	d	ND	А	В	С	Е	н	H1	L	М	Z	Weight (lbs)
S12	1/4	0.54	0.16	0.94	3.94	4.06	1.65	3.62	1.81	0.63	2.05	2.36	0.88
S12	1/4	0.54	0.24	0.94	3.94	4.06	1.65	3.62	1.81	0.63	2.05	2.36	0.88
S12	1/4	0.54	0.31	0.94	3.94	4.06	1.65	3.62	1.81	0.63	2.05	2.36	0.88
S22	1/2	0.84	0.31	1.34	4.53	5.12	2.13	4.57	2.28	0.87	2.64	2.80	2.20
S22	1/2	0.84	0.39	1.34	4.53	5.12	2.13	4.57	2.28	0.87	2.64	2.80	2.20
S22	1/2	0.84	0.59	1.34	4.53	5.12	2.13	4.57	2.28	0.87	2.64	2.80	2.20

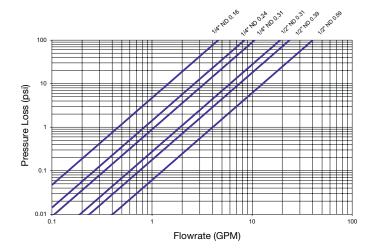


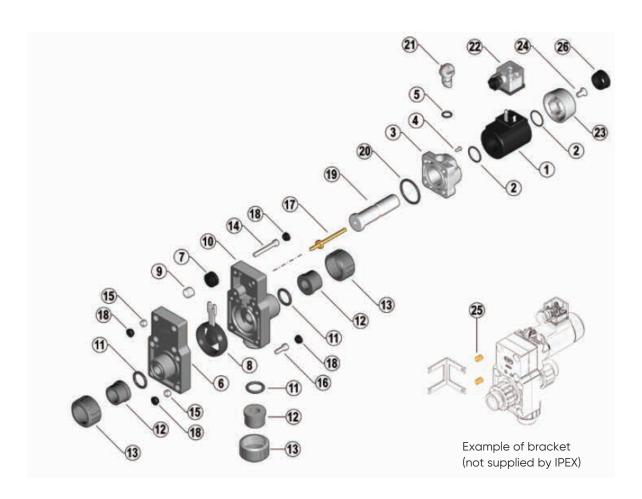
Туре	Size	R	ND	Α	В	С	E	Н	H1	L	М	Z	Weight (lbs)
S12	1/4	1/4-NPT	0.16	0.94	3.94	4.06	1.65	3.58	1.77	0.59	2.05	2.40	0.88
S12	1/4	1/4-NPT	0.24	0.94	3.94	4.06	1.65	3.58	1.77	0.59	2.05	2.40	0.88
S12	1/4	1/4-NPT	0.31	0.94	3.94	4.06	1.65	3.58	1.77	0.59	2.05	2.40	0.88
S22	1/2	1/2-NPT	0.31	1.34	4.53	5.12	2.13	4.41	2.20	0.81	2.64	2.80	2.20
S22	1/2	1/2-NPT	0.39	1.34	4.53	5.12	2.13	4.41	2.20	0.81	2.64	2.80	2.20
S22	1/2	1/2-NPT	0.59	1.34	4.53	5.12	2.13	4.41	2.20	0.81	2.64	2.80	2.20

Female NPT threaded connections – Dimension (inches)

Pressure & Temperature Ratings

Note: The maximum ambient temperature allowed for the solenoid is 122°F (50°C).

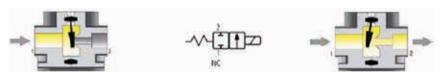

Electrical Data


Duty Cycle	100% ED
Closing Time	~ 20 ms
Opening Time	~ 20 ms
AC Voltage	110 V
Frequency	50/60 Hz
Voltage Allowances	± 10%
Power Consumption, S12	10W
Power Consumption, S22	20W
Protection Class	IP65
Electrical Connection	DIN 43650 connector with LED (1)

Flow Coefficients

Size	ND	C _v
1/4	0.16	0.46
1/4	0.24	0.84
1/4	0.31	1.06
1/2	0.31	1.91
1/2	0.34	2.37
1/2	0.59	4.04

Pressure Loss Chart


#	Component	Material	Qty
1	Coil	PA-GR	1
2	O-ring	EPDM	2
3	Housing for manual override	PP-GR	1
4	Screw	SS	1
5	O-ring	EPDM	1
6	Upper body	PVC	1
7	Spring slide	PP-GR	1
8	Shutter	EPDM or FKM	1
9	Return spring	SS	1
10	Lower body	PVC	1
11	O-ring	EPDM or FKM	2
12	End connector	PVC	2
13	Union nut	PVC	2
14	Screw	Zinc plated steel	4

#	Component	Material	Qty
15	Nuts	Zinc plated steel	8
16	Screw	Zinc plated steel	4
17	Control Spindle	Brass	1
18	Protection caps	PE	8
19	Operator	SS	1
20	O-ring	EPDM	1
21	Manual override	PP-GR	1
22	Connector	-	1
23	Coil cap	PPP-GR	1
24	Screw	SS	1
25	Bracketing nuts	Brass	2
26	Protection cap	PE	1

Installation Procedures


- Remove the union nuts (part #13 on previous page) and slide them onto the pipe ends.
- Solvent cement or thread the end connectors (12) onto the pipe ends. For correct joining procedures, please refer to the sections entitled, "Joining Methods – Solvent Cement" and "Joining Methods – Threading" in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piing Systems".
- Ensure that the desired direction of pipe flow matches the indicated direction on the valve and that the socket o-rings (11) are properly fitted in their grooves. Carefully place the valve in the system between the two end connections.
- 4. Tighten both union nuts. Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Over-tightening may damage the threads on the valve body and/or the union nut, and may even cause the union nut to crack.
- 5. Remove the connector (22) from the solenoid coil (1), disassemble, and then connect the electrical leads.
- 6. Reassemble the connector and reattach to the solenoid coil.

Note: It is advisable to support the valve with a mounting bracket as the weight of the solenoid may cause the pipeline to sag.

De-Energized Solenoid

Energized Solenoid

Where,

- f is the pressure drop (friction loss) in psi,
- SQ is the specific gravity of the fluid,
- Q is the flow rate in GPM,
- C_V is the flow coefficient.

Disassembly

- If removing the valve from an operating system, isolate the valve from the rest of the system. Be sure to depressurize and drain the isolated branch and valve before continuing.
- Remove the connector (22) from the solenoid coil and detach the electrical leads. Be sure to shut off the electrical source before detaching the leads.
- Loosen both union nuts (13) and drop the valve out of the line. If retaining the socket o-rings (11), take care that they are not lost when removing the valve from the line.
- 4. Remove the protection cap (26), unscrew the screw of the coil (24) and remove the cover of the coil (23).
- 5. Remove the coil (1) and the O-ring (2).
- Remove the protective caps (18) and unscrew the screws (14).
- 7. Separate the actuator group from the valve body, remove the control spindle (17) and the O-ring (20).
- 8. Unscrew the screw (4) and remove the manual override (21) and the O-ring (5). Remove the operator (19) from the housing of the manual override (3).
- 9. Unscrew the screws (16) and separate the two half bodies (6 -10) and remove the shutter (8).
- 10. Remove the spring (9) from the spring slide (7) and then detach the spring slide from the shutter (8).

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- 1. Insert the spring slide (7) on the shutter rod (8) and the spring (9) onto the spring slide housing (7).
- 2. Put the shutter (8) on the upper body (6) taking care that the spring (9) is properly positioned into its groove.
- 3. Assemble the two half-bodies (6-10) tightening the screws (16) observing a cross pattern and the torque values suggested on the instruction sheet.
- 4. Insert the operator (19) into the housing for the manual override (3) up to the stop.
- 5. Place the O-ring (5) on the manual override (21) and tighten the screw (4). Verify that the manual override is free to rotate. Set it in "close" position.
- Insert the control spindle (17) into the hole of the operator (19), place the o-ring (20) on the housing of the manual override groove.
- Reassemble the actuator group on the valve body by tightening the screws (14) observing a cross pattern and the torque values suggested on the instruction sheet.
- 8. Insert all protective caps (18), place the coil (1), the coil cap (23) and fix it by tightening the screw (24). Refer to the maximum torque recommendation on the instruction sheet. Replace the protection cap (26).
- 9. Ensure that the socket o-rings (11) are properly fitted in their grooves then attach the end connectors (12) and union nuts (13).

Testing and Operating

The purpose of system testing is to assess the quality of all joints and fittings to ensure that they will withstand the design working pressure, plus a safety margin, without loss of pressure or fluid. Typically, the system will be tested and assessed in sub-sections as this allows for improved isolation and remediation of potential problems. With this in mind, the testing of a specific installed valve is achieved while carrying out a test of the overall system.

An onsite pressure test procedure is outlined in the IPEX Industrial Technical Manual Series, "Volume I: Vinyl Process Piping Systems" under the section entitled, "Testing". The use of this procedure should be sufficient to assess the quality of a valve installation In any test or operating condition, it is important to never exceed the pressure rating of the lowest rated appurtenance in the system.

Important points:

- Never test thermoplastic piping systems with compressed air or other gases including air-over-water boosters.
- When testing, do not exceed the rated maximum operating pressure of the valve.
- Avoid the rapid closure of valves to eliminate the possibility of water hammer which may cause damage to the pipeline or the valve.

Please contact IPEX customer service and technical support with regard to any concern not addressed in this data sheet or the technical manual.

SECTION SEVEN: STANDARDS

STANDARDS

Standards exist to ensure that thermoplastic piping systems meet the required level of performance for a particular application. IPEX engineers and technical staff actively participate in thermoplastic standards development throughout North America. These activities result in new standards and improvements to existing standards for thermoplastic piping.

Standards Organizations

IPEX products comply with standards developed by several standards organizations. Additional information on standards and compliance can be obtained by contacting the following organizations.

ASTM International, www.astm.org

100 Barr Harbor Drive, West Conshohocken, Pennsylvania USA 19428-2959

ANSI, www.ansi.org

1819 L Street, NW., Suite 600, Washington DC USA 20036

ISO, www.iso.org

1 rue de Varembé, Case postale 56, CH-1211 Geneva 20, Switzerland

NSF International, www.nsf.org

P.O. Box 130140, 789 N. Dixboro Rd, Ann Arbor, Michigan USA 48113-014

Applicable Standards

NSF 14

NSF 61

A CTNA

The following is a list of applicable standards for IPEX thermoplastic valves and related piping systems. This list is up-to-date at the time of printing.

ASTM						
ASTM	D1784	Standard Specification for Rigid Poly(Vinyl Chloride) (PVC) Compounds and Chlorinated Poly(Vinyl Chloride) (CPVC) Compounds				
	D1785	Standard Specification for Poly(Vinyl C	Chloride) (F	PVC) Plastic Pipe, Schedules 40, 80, and 120		
	D2464	Standard Specification for Threaded Poly(Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80				
	D2466	Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 40				
	D2467	Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80				
	D3222	Standard Specification for Unmodified Poly(Vinylidene Fluoride) (PVDF) Molding Extrusion and Coating Materials				
	D4101	Standard Specification for Polypropylene Injection and Extrusion Materials				
	F437	Standard Specification for Threaded Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80				
	F439	Standard Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80				
F441	I/F441M	Standard Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80				
	F1498	Standard Specification for Taper Pipe Threads 60° for Thermoplastic Pipe and Fittings				
ANSI			ISO			
	B1.20.1	Pipe Threads, General Purpose	10931	Plastics piping systems for industrial applications –		
	B16.5	Pipe Flanges and Flanged Fittings		Poly(vinylidene fluoride) (PVDF) – Specifications for components and the system		
			11922-1	Thermoplastics pipes for the conveyance of fluids – Dimensions and tolerances – Part 1: Metric series		
NSF						

Plastic Piping System Components and Related Materials

Drinking Water System Components - Health Effects

NOTES

SALES AND CUSTOMER SERVICE

IPEX U.S.A LLC

Toll Free: (800) 463-9572

ipexna.com

About IPEX by Aliaxis

As leading suppliers of thermoplastic piping systems, IPEX by Aliaxis provides our customers with some of the world's largest and most comprehensive product lines. All IPEX by Aliaxis products are backed by more than 50 years of experience. With state-of-the-art manufacturing facilities and distribution centers across North America, we have established a reputation for product innovation, quality, end-user focus and performance.

Markets served by IPEX by Aliaxis products are:

- Electrical systems
- Telecommunications and utility piping systems
- · Industrial process piping systems
- Municipal pressure and gravity piping systems
- Plumbing and mechanical piping systems
- · PE Electrofusion systems for gas and water
- · Industrial, plumbing and electrical cements
- Irrigation systems
- PVC, CPVC, ABS, PE, PEX, PVCO, PP and PVDF pipe and fittings (1/2" to 60")

Xirtec® is a registered trademark used under license.
Xirtec® CPVC piping systems are made with Corzan® CPVC compounds.
Corzan® is a registered trademark of the Lubrizol Corporation.

This literature is published in good faith and is believed to be reliable. However, it does not represent and/or warrant in any manner the information and suggestions contained in this brochure. Data presented is the result of laboratory tests and field experience.

A policy of ongoing product improvement is maintaned. This may result in modifications of features and/or specifications without notice.

