
Product Data Sheet

< STANDARDS >

ASTM D1784 ASTM D2464 ASTM D2466 ASTM D2467 ASTM F1498 ASTM F437 ASTM F439

ANSI B1.20.1

IPEX TKD Series 3-Way Automated Ball Valves can be used for flow diverting, mixing, or on/off isolation. They offer a variety of advanced features such as the patented seat stop carrier, a high quality stem and ball support system, and the new DUAL BLOCK® system which locks the union nuts preventing back-off due to vibration or thermal cycling. Deep grooves, thick o-rings, and cushioned Teflon® seats contribute to strong seals at pressures up to 232psi while an integral mounting flange and support bracketing combine for simple adaptation for actuation and anchoring. Actuators can be configured for 90° or 180° operation. TKD Series 3-Way Automated Ball Valves are part of our complete systems of pipe, valves, and fittings, engineered and manufactured to our strict quality, performance, and dimensional standards.

VALVE AVAILABILITY

Body Material:	PVC, CPVC
Size Range:	1/2" through 2"
Pressure:	232psi
Seats:	Teflon® (PTFE)
Seals:	EPDM or FPM
End Connections:	Socket (IPS), Threaded (FNPT)
Actuator Control:	Double Acting Pneumatic, Spring Return Pneumatic, Electric

Sample Specification

Samples Specifications

1.0 Ball Valves – TKD

1.1 Material

- The valve body, stem, ball, end connectors, and unions shall be made of PVC compound which shall meet or exceed the requirements of cell classification 12454 according to ASTM D1784.
- The valve body, stem, ball and unions shall be made of Corzan® CPVC compound which shall meet or exceed the requirements of 23447 according to ASTM D1784.
- These compounds shall be listed with NSF to Standard 61 for potable water.
- 1.2 Seats
- The ball seats shall be made of Teflon® (PTFE).
- 1.3 Seals
- The o-ring seals shall be made of EPDM.
- or The o-ring seals shall be made of FPM.

2.0 Connections

- 2.1 Socket style
- The IPS socket PVC end connectors shall conform to the dimensional standards ASTM D2466 and ASTM D2467.
- 2.2 Threaded style
- The female NPT threaded PVC end connectors shall conform to the dimensional standards ASTM D2464, ASTM F1498, and ANSI B1.20.1.

3.0 Design Features

- All valves shall be true union at all three ports.
- All valves shall be full port.
- Valve design shall permit positive shutoff of any of the three ports.
- Balls shall be of T-port or L-port design (specifier must select one).
- The valve shall have blocking seat supports at all three ports.
- The threaded carrier (ball seat support) shall be adjustable with the valve installed.
- The valve body, union nuts and carrier shall have deep square style threads for increased strength.
- The ball shall be machined smooth to minimize wear on valve seats.
- All valve seats shall have o-ring backing cushions to compensate for wear and prevent seizure of the ball.
- The thickness of the valve body shall be the same at all three ports.
- The valve shall include the Dual Block[®] union nut locking mechanism.
- The stem design shall feature a shear point above the o-ring to maintain system integrity in the unlikely event of a stem breakage.
- All valves shall have integrally molded mounting flanges for support and actuation.
- 3.1 Pressure Rating
 - All valves shall be rated at 232psi at 73°F (23°C).
- 3.2 Markings
- All valves shall be marked to indicate size, material designation, and manufacturers name or trade mark.

Sample Specification

3.3 Color Coding

- All PVC valves shall be color-coded dark gray.
- 4.0 All valves shall be Xirtec® PVC by IPEX or approved equal.

5.0 Actuators

• All Actuators shall be factory installed by IPEX

Pneumatic Actuator:

- Shall be sized for 80 psi control air pressure
- Shall be dual piston rack and pinion design with linear torque output.
- Body shall be Technopolymer UT series or Anodized Aluminum MT series with standard position indicator and NAMUR VDI/VDE 3845 and ISO 5211 mounting dimensions.
- All models shall be operable using air, water, nitrogen or compatible hydraulic fluids from 40 120psi.
- Aluminum body models shall feature dual travel stops that provide +/- 10° stroke rotation on both the opening and closing phases.
- All external fasteners shall be stainless steel.

Electric Actuator:

- Shall have 100VAC 240VAC reversing motors with torque limiters, thermal protection, auxiliary limit switches, NEMA 4X enclosure*, manual override, and position indicator as standard.
- or Shall have 24VDC reversing motors with torque limiters, thermal protection, auxiliary limit switches, NEMA 4X enclosure*, manual override, and position indicator as standard.
- 4-20mA positioner, battery backup, and 180° rotation models shall be available in 100 – 240VAC and 24VDC
- All models shall have ISO 5211 mounting dimensions

* Type 4X Indoor Use Only Enclosure

Product Data Sheet

				IPEX Pc	art Number	
Size	Body	Seal	Pneumatic	Pneumatic Spring Return,	Pneumatic Spring Return,	Electric Double Acting,
(inches)		Material	Double Acting	Normally Closed IPS FNPT	Normally Open	100-240 VAC
			IPS FNPT		IPS FNPT	IPS FNPT
	PVC	EPDM	Socket Threaded 253791	Socket Threaded 253767	Socket Threaded 253744	Socket Threaded 253720
	L-Port	FPM	253797	253773	253750	253726
	PVC	EPDM	253803	253779	253756	253732
	T-Port	FPM	253809	253785	253762	253738
1/2	CPVC	EPDM	254071	254061	253828	253840
	L-Port	FPM	254001	254013	254025	254037
	CPVC	EPDM	254055	254067	253834	253995
	T-Port	FPM	254007	254019	254031	254044
	PVC	EPDM	253792	253768	253745	253721
	L-Port	FPM	253798	253774	253751	253727
	PVC	EPDM	253804	253780	253757	253733
	T-Port	FPM	253810	253786	253763	253739
3/4	CPVC	EPDM	254049	254062	253829	253841
	L-Port	FPM	254002	254014	254026	254038
	CPVC	EPDM	254056	254068	253835	253996
	T-Port	FPM	254008	254020	254032	254045
	PVC	EPDM	253793	253769	253746	253722
	L-Port	FPM	253799	253775	253752	253728
	PVC	EPDM	253805	253781	253758	253734
	T-Port	FPM	253811	253787	253764	253740
1	CPVC	EPDM	254051	254063	253830	253991
	L-Port	FPM	254003	254015	254027	254039
	CPVC	EPDM	254057	254069	253836	253997
	T-Port	FPM	254009	254021	254033	254046
	PVC	EPDM	253794	253770	253747	253723
	L-Port	FPM	253800	253776	253753	253729
	PVC	EPDM	253806	253782	253759	253735
1-1/4	T-Port	FPM	253812	253788	253765	253741
1-1/4	CPVC	EPDM	254052	254064	253831	253992
	L-Port	FPM	254004	254016	254028	254040
	CPVC	EPDM	254058	254070	253837	253998
	T-Port	FPM	254010	254022	254034	254047
	PVC	EPDM	253795	253771	253748	253724
	L-Port	FPM	253801	253777	253754	253730
	PVC	EPDM	253807	253783	253760	253736
1-1/2	T-Port	FPM	253813	253789	253766	253742
, _	CPVC	EPDM	254053	254065	253832	253993
	L-Port	FPM	254005	254017	254029	254041
	CPVC	EPDM	254059	254050	253838	253999
	T-Port	FPM	254011	254023	254035	254048
	PVC	EPDM	253796	253772	253749	253725
	L-Port	FPM	253802	253778	253755	253431
	PVC T_Dort	EPDM	253808	253784	253761	253737
2	T-Port	FPM	253814	253790	253815	253743
	CPVC L-Port	EPDM	254060	254066	253833	253994
		FPM	254006	254018	254030	254043
	CPVC T-Port	EPDM	254054	254072	253839	254000
	i FUIL	FPM	254012	254024	254036	254042

Technical Data

3.43

4.26

4.59

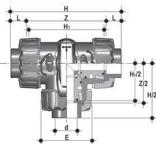
5.55

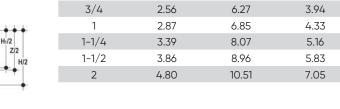
6.20

7.50

0.91

1.00


1.13


1.26

1.38

1.50

Dimensions

2.13

1/2

Female NPT Threaded Connections - Dimension (inches)

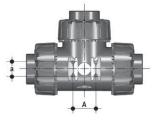
IPS Socket Connections - Dimension (inches)

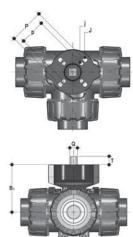
3.15

5.20

Size (R)		Н	Hı		Z
1/2	2.13	4.96	3.15	0.71	3.56
3/4	2.56	5.76	3.94	0.71	4.35
1	2.87	6.56	4.33	0.89	4.78
1-1/4	3.39	7.71	5.16	0.99	5.73
1-1/2	3.86	8.32	5.83	0.97	6.38
2	4.80	9.99	7.05	1.17	7.66

IPS Socket & Female NPT Threaded - Dimension (inches)

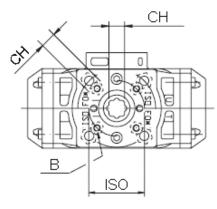

Size (R)	В	Bı	С	C1
1/2	2.13	1.14	2.64	1.58
3/4	2.56	1.36	3.35	1.93
1	2.74	1.54	3.35	1.93
1-1/4	3.25	1.81	4.25	2.52
1-1/2	3.50	2.05	4.25	2.52
2	4.25	2.44	5.28	2.99

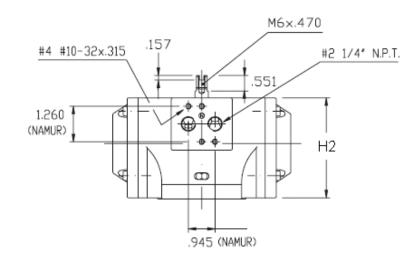

Mounting Flanges – Dimension (inches)

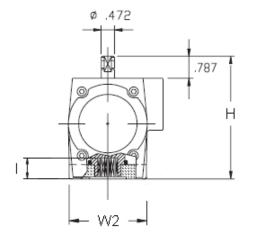
Size	А
1/2	1.22
3/4	1.22
1	1.22
1-1/4	1.97
1-1/2	1.97
2	1.97

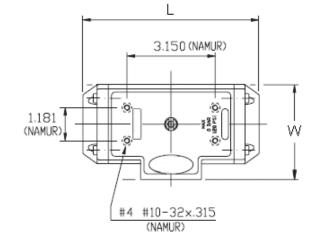
Mounting Kit – Dimensions (inches)

			0		
Size	B2	Т	Q	р / Р	j / J
1/2	2.28	0.47	0.43	F03 / F04	0.22
3/4	2.89	0.47	0.43	F03 / F05 or F04	0.22 / 0.26 or 0.22
1	2.91	0.47	0.43	F03 / F05 or F04	0.22 / 0.26 or 0.22
1-1/4	3.82	0.63	0.43 or 0.55	F05	0.26
1-1/2	4.09	0.63	0.43 or 0.55	F05	0.26
2	4.49	0.63	0.43 or 0.55	F05 / F07	0.26 / 0.33

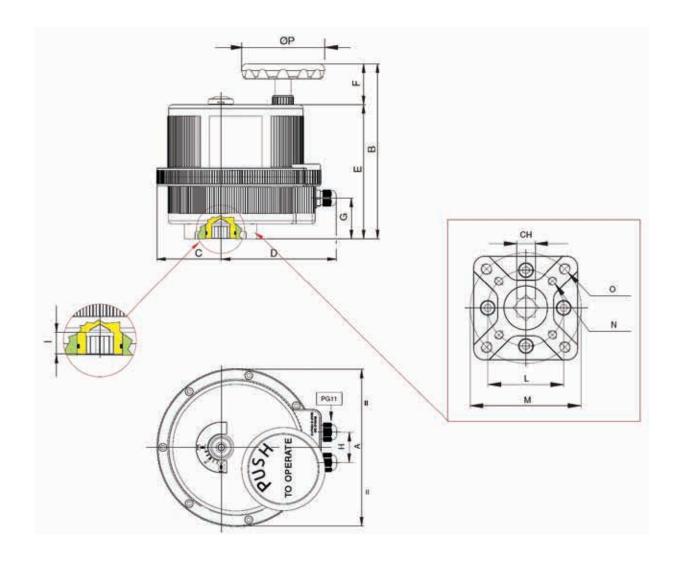



5


Technical Data (cont'd)


Pneumatic Actuator Dimensions

Models UT11, UT14, UT19

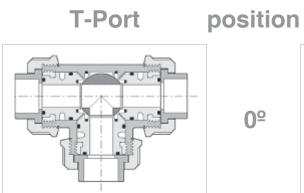


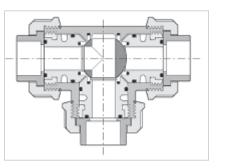
				Dimer	1310113 (1	nenes)				
Valve Size	Double Acting Model	ISO	СН	L	W	W2	Н	H2	I	В
1/2	UT11DA	F04	0.43	4.69	2.64	2.09	3.58	2.76	0.49	10-32 UNF x 0.40
3/4	UT14DA	F05 / F07	0.55	6.30	3.39	2.76	4.37	3.54	0.75	1/4-20 UNC x 0.51
1	UT14DA	F05 / F07	0.55	6.30	3.39	2.76	4.37	3.54	0.75	1/4-20 UNC x 0.51
1-1/4	UT14DA	F05 / F07	0.55	6.30	3.39	2.76	4.37	3.54	0.75	1/4-20 UNC x 0.51
1-1/2	UT14DA	F05 / F07	0.55	6.30	3.39	2.76	4.37	3.54	0.75	1/4-20 UNC x 0.51
2	UT14DA	F05 / F07	0.55	6.30	3.39	2.76	4.37	3.54	0.75	1/4-20 UNC x 0.51

Dimensions	(in a h a a)
IJIMANSIONS	Inchest

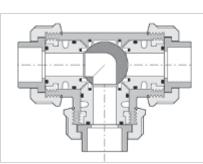
Technical Data (cont'd)

Electric Actuator Dimensions

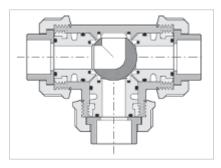

	Dimensions (inches)															
	Actuato: Model	ISO	СН	А	В	С	D	Е	F	G	Н	I	L	Μ	Ν	Ο
1/2	VB015	F03 / F05	0.43	4.84	6.28	1.67	4.78	5.67	0.61	4.35	1.26	0.47	1.42	1.97	10-24 UNC x 0.55	1/4-20 UNC x 0.55
3/4	VB015	F03 / F05	0.43	4.84	6.28	1.67	4.78	5.67	0.61	4.35	1.26	0.47	1.42	1.97	10-24 UNC x 0.55	1/4-20 UNC x 0.55
1	VB015	F03 / F05	0.43	4.84	6.28	1.67	4.78	5.67	0.61	4.35	1.26	0.47	1.42	1.97	10-24 UNC x 0.55	1/4-20 UNC x 0.55
1-1/4	VB015	F03 / F05	0.43	4.84	6.28	1.67	4.78	5.67	0.61	4.35	1.26	0.47	1.42	1.97	10-24 UNC x 0.55	1/4-20 UNC x 0.55
1-1/2	VB030	F03 / F05	0.43	6.18	7.39	2.38	5.01	5.75	1.64	1.30	1.42	0.47	1.42	1.97	10-24 UNC x 0.55	1/4-20 UNC x 0.55
2	VB030	F03 / F05	0.43	6.18	7.39	2.38	5.01	5.75	1.64	1.30	1.42	0.47	1.42	1.97	10-24 UNC x 0.55	1/4-20 UNC x 0.55

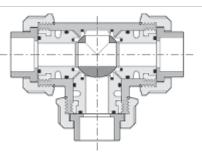

Technical Data (cont'd)

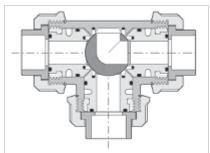
operating positions

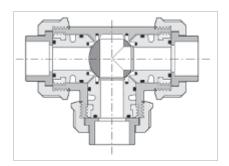


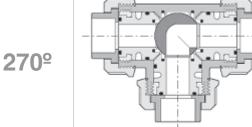
Position	T-Port	L-Port
0°	mixing	diverting
90°	diverting	closed
180°	straight flow	closed
270°	diverting	diverting






L-Port

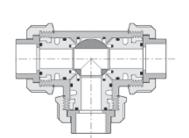




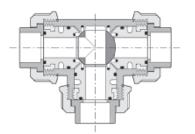
90[°]

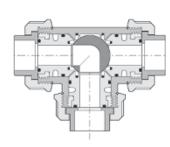
8

Technical Data (cont'd)

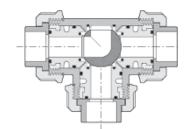

Operating Positions - Please specify 'open' and 'closed' positions

Position

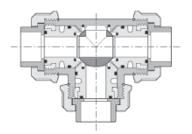

0⁰

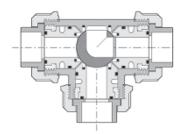

90[°]

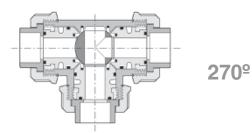
180[°]

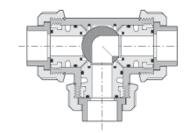


T-Port






L-Port



Position	T-Port	L-Port
0°	mixing	diverting
90°	diverting	closed
180°	straight flow	closed
270°	diverting	diverting

Note: Electric actuators can be configured for either 90° or 180° operation.

Technical Data (cont'd)

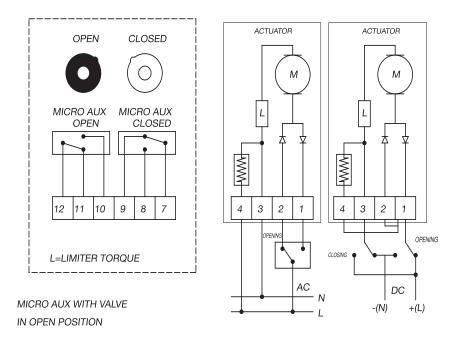
Note: Pneumatic actuator performance is based on 80psi available control air pressure.

Actuator Technical Data

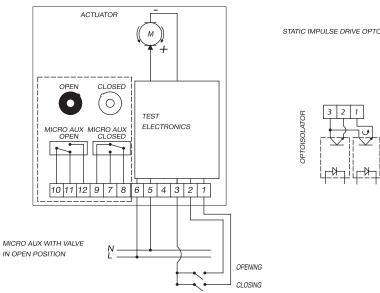
Valve Size (inches)	Double Acting Pneumatic	Actuator Model Spring Return Pneumatic	Electric
1/2	UT11DA	UT11S2	VB015
3/4	UT14DA	UT14S4	VB015
1	UT14DA	UT14S4	VB015
1-1/4	UT14DA	UT19S5	VB015
1-1/2	UT14DA	UT19S5	VB030
2	UT14DA	UT26S4	VB030

Pneumatic Actuator Torque Data

Valve Size (inches)	DOUBLE ACTING		SPING RETURN					
			Model	Spring Set	Spring Torque (in-Ibs)		Air Torque (in-Ibs)	
	Model	Torque (in-lbs)	MODEI	(standard)	Start	End	Start	End
1/2	UT11DA	125	UT11S2	S2	66	44	81	59
3/4	UT14DA	275	UT14S4	S4	150	107	168	125
1	UT14DA	275	UT14S4	S4	150	107	168	125
1-1/4	UT14DA	275	UT19S5	S5	307	230	270	193
1-1/2	UT14DA	275	UT19S5	S5	307	230	270	193
2	UT14DA	275	UT26S4	S4	392	247	503	358


Pneumatic Actuator Weights and Air Consumption

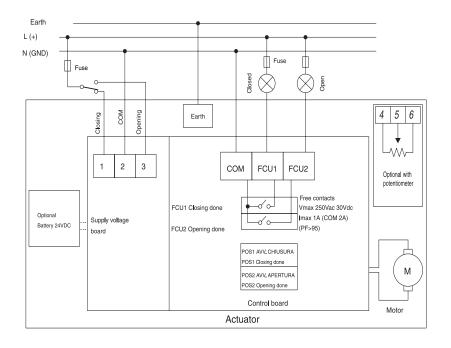
Valve Size		DOUBLE ACTING		SPRING RETURN			
(inches)	Model	Weight (lbs)	Air Cons. (in³)	Model	Weight (lbs)	Air Cons. (in ³)	
1/2	UT11DA	1.26	13.5	UT11S2	1.44	8.0	
3/4	UT14DA	2.62	22.0	UT14S4	3.06	10.8	
1	UT14DA	2.62	22.0	UT14S4	3.06	10.8	
1-1/4	UT14DA	2.62	22.0	UT19S5	5.16	17.5	
1-1/2	UT14DA	2.62	22.0	UT19S5	5.16	17.5	
2	UT14DA	2.62	22.0	UT26S4	9.88	30.0	


Technical Data (cont'd)

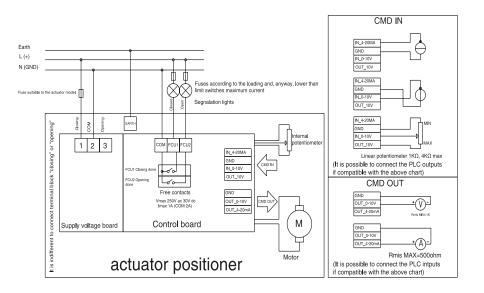
Electrical Actuator

Model VB015 24V AC/DC

Model VB015 100V - 240V AC


STATIC IMPULSE DRIVE OPTOISOLATED BY PLC

I= 6 mA


Technical Data (cont'd)

Electrical Actuator

Model VB30 to VB350, 24V AC/DC, 110 - 240V AC

VB30 to VB350 24V AC/DC, 110 - 240V AC with Positioner

Technical Data (cont'd)

М	odel	VB015	VB030	
Max Working Torque (in-Lbs)		133	266	
Voltage (V)	Low Voltage	12V AC/DC	12V DC	
		24V AC/DC	24V AC/DC	
	High Voltage Multitension	100-240V AC	100-240V AC	
Working Time (sec)		10	8	
Torque Limiter		STD	STD	
Duty Rating		50%	75%	
Protection		IP65 ** NEMA 4X*	IP65-67 NEMA 4X*	
Rotation		90°	90°	
Upon Request		180°	$180^{\circ} \text{ or } 70^{\circ}$	
Manual Interven	tion	STD	STD	
Position Indicator		STD	STD	
Working Temper	rature	-4F +131F	-4F +131F	
Heater		STD	STD	
Additional Free Limit Switches		2 STD	2 STD	
Drilling ISO 5211 I	PAD	F03 - F05	F03 - F05	
Square Drive		0.43	0.43	
Square Upon Re	equest	0.35	0.35 – 0.55	
Positioner (4~20mA or 0~10 VDC)		Not Available	Upon Request	
Electrical Conne	ections	PG11	PG11	
Weight (LBS)		3.09	5.07	

Electric Actuator Power Consumption

MODEL		VB	015	VB030		
	Nominal Voltage	100V AC	240V AC	100 – 2	40V AC	
VERSION H	Absorbed Current	75mA	25mA	0.3 -	· 0.2A	
	Absorbed Power	6.6 VA	6 VA	30 – 48VA		
	Nominal Voltage	24V AC/DC		24V AC/DC		
VERSION L	Absorbed Current	1.2A	0.6A	2.0A	1.0A	
	Absorbed Power	15 VA		24 VA		
Frequency		50/60 HZ				

Technical Data (cont'd)

Components (24)1 Insert 2 Handle Stem O-Rings 3 4 Stem 5 Ball Seat (17) 6 Ball 7 Body 1 8 Support O-Ring for Ball Seat (18) 9 Radial Seal O-Ring 10 2 Socket Seal O-Ring (19) 11 Support for Ball Seat 20 12 End Connector (21) 13abc Union Nuts 15 Stop Ring 17 Upper Plate 18 Screw 19 **Coupling Spindle** 20 Nut 3 21 Screw 25 22 Screw 23 Lower Plate 4 24 Pneumatic Actuator 13c 25 Position Indicator 26 Electric Actuator (not shown) 27 60000 8 6 5 (10) (15) (12)

Technical Data (cont'd)

Installation Procedures

- 1. For socket and threaded style connections, remove the union nuts (part #13 on previous page) and slide them onto the pipe. For flanged connections, remove the union nut / flange assemblies from the valve (Figure 1).
- 2. Please refer to the appropriate connection style subsection:
 - a. For socket style, solvent cement the end connectors
 (12) onto the pipe ends. For correct joining procedure,
 please refer to the section entitled, "Joining Methods
 Solvent Cementing" in the IPEX Industrial Technical
 Manual Series, "Volume I: Vinyl Process Piping
 Systems". Be sure to allow sufficient cure time before
 continuing with the valve installation.
 - b. For threaded style, thread the end connectors (12)
 onto the pipe ends. For correct joining procedure,
 please refer to the section entitled, "Joining Methods
 Threading" in the IPEX Industrial Technical Manual
 Series, "Volume I: Vinyl Process Piping Systems" (Figure 2).
- 3. All quarter turn automated valves are tested for proper operation before leaving the factory. Adjustment of the seat stop carrier should not be necessary. However, If adjustment is required, remove the insert tool (1) from the handle (2) provided. Line up the moldings on the tool with the slots in the seat supports. Tighten or loosen to the desired position then replace the tool on the handle. For correct alignment of the ball and seat support system, adjustment should begin with the center port.
- 4. Ensure that the socket o-rings (10) are properly fitted in their grooves then carefully place the valve in the system between the end connections. If anchoring is required, fix the valve to the supporting structure via the integral mounting flange on the bottom of the valve body (7).
- 5. Tighten the three union nuts. Hand tightening is typically sufficient to maintain a seal for the maximum working pressure. Over-tightening may damage the threads on the valve body and/or the union nut, and may even cause the union nut to crack (Figure 2).
- 6. Check the installation of the dedicated lock nut device DUAL BLOCK[®] (26) on the valve body (Figure 3).
- 7. Connect pneumatic or electric connections according to provided diagrams.
- 8. Cycle the valve open and close to ensure that the cycling performance is adequate. If adjustment is required, loosen the union nuts, remove the valve from the system, and then continue from Step 3.

Figure 1

Figure 2

Figure 3

Technical Data (cont'd)

Disassembly

- 1. If removing the valve from an operating system, isolate the valve from the rest of the system. Be sure to depressurize and drain the isolated branch and valve before continuing.
- 2. If necessary, remove actuator connections and detach the valve from the support structure
- 3. Unlock the Dual Block® system (Figure 3) by compressing the lever (26). Loosen the three union nuts (13) and drop the valve out of the line. If retaining the socket o-rings (10), take care that they are not lost when removing the valve from the line.
- 4. Remove the actuator, if necessary, from the valve by removing the screws (22) located horizontally across from each other fastening the upper and lower portions of the actuation pad.
- 5. To disassemble, rotate the ball to the appropriate position using the provided handle (2).
- 4. Remove the insert tool (1) from the handle provided, then line up the moldings on the tool with the slots in the seat supports (11). Loosen and remove all three seat supports from the valve body (7).
- 5. Remove the ball (6) from the valve body while taking care not to score or damage the outer surface.
- 6. To remove the stem, push it into the valve body from above.
- 7. Remove the seats (5), backing o-rings (8), and body o-rings (9) from the seat supports.
- 8. Remove the seat and backing o-ring from the inside of the valve body.
- 9. Remove the stem o-rings (3).
- 10. The valve components can now be checked for problems and/or replaced.

Note: It is not necessary to remove the actuator from the valve unless the stem requires servicing or replacement. If possible, leave actuator attached to valve during servicing.

Assembly

Note: Before assembling the valve components, it is advisable to lubricate the o-rings with a water soluble lubricant. Be sure to consult the "IPEX Chemical Resistance Guide" and/or other trusted resources to determine specific lubricant-rubber compatibilities.

- Properly fit the stem o-rings (3) in the grooves on the stem (4), then insert the stem from the inside of the valve body (7).
- 2. Line up the markings on the stem with the ports in the valve body.
- 3. Replace the backing o-ring (8) and seat (5) at the back of the valve body.
- Insert the ball (6) into the valve body while ensuring that the ports line up with the markings on the stem. Ensure that the actuator and ball position correspond to the same operating position
- Ensure that all body o-rings (9), backing o-rings, and seats are properly fitted on the three seat supports (11). Starting with the center port, tighten each support into the valve body using the insert tool (1).
- 6. Replace the actuator, if removed, and affix in position using screws (22) located horizontally across from each other.
- 7. Properly fit the socket o-rings (10) in their respective grooves.
- 8. Place the end connectors (12) into the union nuts (13), then thread onto the valve body taking care that the socket o-rings remain properly fitted in their grooves.

About IPEX

About the IPEX Group of Companies

As leading suppliers of thermoplastic piping systems, the IPEX Group of Companies provides our customers with some of the world's largest and most comprehensive product lines. All IPEX products are backed by more than 50 years of experience. With state-of-the-art manufacturing facilities and distribution centers across North America, we have established a reputation for product innovation, quality, enduser focus and performance.

Markets served by IPEX group products are:

- Electrical systems
- · Telecommunications and utility piping systems
- Industrial process piping systems
- Municipal pressure and gravity piping systems
- Plumbing and mechanical piping systems
- PE Electrofusion systems for gas and water
- Industrial, plumbing and electrical cements
- Irrigation systems
- PVC, CPVC, PP, PVDF, PE, ABS, and PEX pipe and fittings

This literature is published in good faith and is believed to be reliable. However, it does not represent and/or warrant in any manner the information and suggestions contained in this brochure. Data presented is the result of laboratory tests and field experience.

A policy of ongoing product improvement is maintained. This may result in modifications of features and/or specifications without notice.

